1. Problem 7, page 387 of text.(Take A a positive constant.)
2. Problem 9, page 387 of text.(Take A a positive constant.)
3. The (counter-clockwise) moment acting on a cylinder in 2D, due to the pressure force of a potential flow of a fluid of constant density, with uniform flow at infinity, is defined by

$$
M=\oint_{C} p(x d x+y d y)
$$

where C is the simple closed curve bounding the cylinder. Using the Bernoulli theorem ($p=-\frac{1}{2} \rho q^{2}+$ constant. $\rho=$ fluid density) and the approach taken in class for proving Blasius' formula for the force on the cylinder, show that

$$
M=-\frac{1}{2} \rho \oint_{C} \frac{d w}{d z} \frac{\overline{d w}}{d z} \operatorname{Re}(z \overline{d z})=-\frac{1}{2} \rho \operatorname{Re} \oint_{C}\left(\frac{d w}{d z}\right)^{2} z d z .
$$

4. The complex potential for a uniform flow past a circular cylinder of radius a and center at the origin, having a circulation Γ, is

$$
w=U\left(z+\frac{a^{2}}{z}\right)-i \frac{\Gamma}{2 \pi} \log z .
$$

Using residue theory and the moment formula of problem (3) above, show that the moment on the circular cylinder is zero.
5. A flat plate $x=0,|y| \leq 2 a$ is place in a uniform flow $(u, v)=(\cos \alpha, \sin \alpha)$, and the Kutta conition is satisfied at the trailing edge. Determine from the complex potential (using $d w / d z=d w / d \zeta d \zeta / d z$ the velocity components (u, v) on the top side of the plate. Show that $v=0$ there and that u is singular at $z=-2 a$ but is finite a $z=2 a$.

