1. Problem 2 page 396 of text. The R is as defined in problem 1 on this page, and as discussed in class.
2. Problem 1, page 403 of text.
3.Problem 3, page 403. (Set $x_{1}=-1, x_{2}=-a$ etc.)
4.Problem 4, page 403.
3. Problem 5, page 404
4. (a) Based on the discussion in class, show that the mapping shown in the figure is given by

$$
w=A^{\prime} \int_{0}^{z} \frac{s^{2 \alpha / \pi}}{\left(1-s^{2}\right)^{\alpha / \pi}} d s+a i
$$

where

$$
A^{\prime}=\frac{2(b-a i)}{B(\alpha / \pi+1 / 2,1-\alpha / \pi)}
$$

Here $B(p, q)=\int_{0}^{1} t^{p-1}(1-t)^{q-1} d t$.
(b) Determine the mapping function in the limit $b \rightarrow 0, a>0$ fixed.
(c) Use the result of (b) to find the complex potential $\phi+i \psi=W(w)$ for the uniform flow past a rigid fence $u=0,0 \leq v \leq a$ in the w-plane, such that the velocity at $w=\infty$ is $(\mathrm{U}, 0)$. Note that here the w-plane is now the physical plane. Consider the image of the complex potential $W=U a z$ in the z-plane. (Unfortunately the notation now involves w and W with different meanings. You might prefer to rename the w-lane as the ζ-plane for part (c), and restrict w to complex potential.) You do not have to give ϕ, ψ explicitly as functions of u, v.

> (z)

