1. (a) If $u(r, \theta)$ is a harmonic function for $r<R$, verify from the results of section 117 that u satisfies the mean-value property

$$
u(0)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u(r, \phi) d \phi, r<R
$$

(b) Show that u also satisfies

$$
u(0)=\frac{1}{\pi r^{2}} \iint_{\rho<r} u(\rho, \phi) d A,
$$

where $d A$ is the area element.
2. Using the Fourier series representation on $-\pi,+\pi$, show that the harmonic function defined in $r<1$ which has the boundary values $u(1, \phi)=\phi / 2,-\pi<\phi<\pi$ is equal to $\operatorname{Im}(\log (1+z))$.
3. Suppose that u is harmonic and positive in the disk $0 \leq r \leq r_{0}$ and represented there by the Poisson integral formula. Show that then

$$
u(0)\left(\frac{r_{0}-r}{r_{0}+r}\right) \leq u(r, \theta) \leq u(0)\left(\frac{r_{0}+r}{r_{0}-r}\right)
$$

4. Problem 4, page 425 of text.
5. Problem 1, page 431 of text.
6. Problem 4, page 436 of text. Note: The heat flux into the plate along the segment $0<x<1$ is equal to $-\partial T / \partial y(x, 0)$, and the heat flux out of the plate on the positive y-axis is $\partial T / \partial x(0, y)$.
7. By finding a suitable function analytic in the upper half-plane, show that the Hilbert transform of $\frac{\sin x}{x}$ is $\frac{1-\cos x}{x}$.
8. (a) Suppose we wish to solve the Neumann problem for the disk $r \leq r_{0}$ using Fourier series. We know any harmonic function in $r<r_{0}$ has an expansion

$$
u(r, \theta)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(\frac{r}{r_{0}}\right)^{n}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right)
$$

Show that if we want $\left.\frac{\partial u}{\partial r}\right|_{r=r_{0}}=V(\theta)$, we should take

$$
\left(a_{n}, b_{n}\right)=\frac{r_{0}}{\pi n} \int_{0}^{2 \pi} V(\phi)(\cos n \phi, \sin n \phi) d \phi
$$

(b) Use (a) to construct a harmonic function u in the unit circle having $\left.\frac{\partial u}{\partial r}\right|_{r=1}$ equal to 1 for $-\pi / 2<\theta<\pi / 2$ and -1 for $\pi / 2<\theta<3 \pi / 2$.

