1. Complete all the steps of the proof of lemma 3 , chapter 1 , of the lecture notes for lectures 9-14.
2. Verify for step (iii) of the proof of the mapping theorem in the lecture notes:

$$
G^{\prime}(\zeta)=\left|H^{\prime}(\zeta)\right|=\frac{1+|\alpha|}{2 \sqrt{|\alpha|}} F^{\prime}(\zeta)>F^{\prime}(\zeta)
$$

3. If $f(z)$ is analytic and $|f(z)| \leq 1$ for $|z|<1$, ad $\alpha \mid<1$, show that

$$
\left|\frac{f(z)-f(\alpha)}{1-\overline{f(\alpha)} f(z)}\right| \leq\left|\frac{z-\alpha}{1-\bar{\alpha} z}\right|
$$

Hint: $\zeta=T z=\frac{z-\alpha}{1-\bar{\alpha} z}$ maps the unit disk onto itself carrying α to the origin. Also $S w=\frac{w-f(\alpha)}{1-\overline{f(\alpha)} w}$ maps the unit disk onto itself carrying $f(\alpha)$ to the origin. Then show that $g(\zeta)=S f\left(T^{-1} \zeta\right)$ satisfies the assumptions of the Schwarz lemma.)
4. Show that, if x is a positive real variable, $f(x)=(1+x)^{-1}$ and $g(x)=(1+$ $e^{-x}(1+x)^{-1}$ have the same asymptotic approximatioin $h_{N}(x)$ with the property that $f, g-h_{N}=O\left(x^{-(N+1)}\right), x \rightarrow \infty$.
5. Find a few terms of the asymptotic expansion of

$$
\int_{x}^{\infty} e^{-t^{4}} d t, x \rightarrow 0
$$

Your answer should be a series in power of x up to and including x^{9}. Here x, t are real. Note that $\int_{0}^{\infty} e^{-t^{4}} d t$ may be expressed in terms of the gamma function $\Gamma(z)=\int_{0}^{\infty} u^{z-1} e^{-u} d u$. What is the order of the first neglected term?
6. Use the method of stationary phase to find the leading, dominant term in the asymptotic expansion of

$$
\int_{0}^{1} e^{i t\left(\lambda-\lambda^{3}\right)} d \lambda,
$$

as $t \rightarrow+\infty$. Here t, k are real variables.

