1. (a) Find the modulus and the Arg of w where

$$
w=\frac{(4-2 i)(1+i)}{(1-i)(\sqrt{3}+i)}
$$

(b)Prove that, if $z=x+i y$ is a complex number, $|x| \leq|z| \leq|x|+|y|$.
2. (a) Prove that, if z and w are complex numbers and $|w|=1$ (so that $w=\frac{1}{\bar{w}}$), then

$$
\left|\frac{z-w}{1-\bar{z} w}\right|=1 .
$$

(b) Prove that, if $|z|<1,|w|<1$, then

$$
\left|\frac{z-w}{1-\bar{z} w}\right|<1 .
$$

(Hint: Consider the square a product of the expression and its conjugate.)
3. The Chebychev polynomials $T_{n}(x)$ are defined by $T_{n}(x)=\cos \left(n \cos ^{-1} x\right),|x| \leq 1$ Use the de Moivre formula $(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$ to obtain $\cos (n \theta)=R e(\cos \theta+$ $i \sin \theta)^{n}$ and, with $\theta=\cos ^{-1} x$ show (using the expansion of $(a+i b)^{n}$) that the T_{n} are indeed polynomials, and that T_{n} is of order n. Write down the $T_{n}(x)$ through $n=4$.
4. Find the square roots of (a) $-i$ and (b) $\sqrt{3}-i$, expressing them in the form $x+i y$. (c) Find the 5th roots of $1-i \sqrt{3}$ in polar form.
5. Write in terms of complex variables z, \bar{z} : (a) The equation of an ellipse centered at origin with semi-axes a, b. (b) The equation of the straight line through (a, b) with slope m.
6. (a) Describe a set S of the complex plane such that the function $w=f(z)=z^{3}$ maps S into the entire complex plane such that every $w \neq \infty$ corresponds to a unique $z \neq \infty$. Prove that $f=z^{3}$ is continuous at $z=1$.
(b) If $w=\frac{a+b z}{c+d z}, a d-b c \neq 0$, show that z is uniquely determined by the value of w, implying the inverse function is single-valued. (Assume

$$
w=\frac{a+b z_{1}}{c+d z_{1}}=\frac{a+b z_{2}}{c+d z_{2}}, z_{1} \neq z_{2}
$$

and get a contradiction. This w defines the linear fractional transformation, an important class of maps we shall study later.)

