1. (a) Find $\lim _{z \rightarrow i}(z+1 / z)$. (b) Show that $\lim _{z \rightarrow z_{0}} f(z) g(z)=0$ if $\lim _{z \rightarrow z_{0}} f(z)=0$ and there exists a positive number M such that $|g| \leq M$ in some ϵ-neighborhood of z_{0}.
2. Suppose that $f\left(z_{0}\right)=g\left(z_{0}\right)=0$ and that $f^{\prime}\left(z_{0}\right)$ and $g^{\prime}\left(z_{0}\right) \neq 0$ exist. Show that

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)}{g(z)}=\frac{f^{\prime}\left(z_{0}\right)}{g^{\prime}\left(z_{0}\right)}
$$

3. Using the differential operators $\frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right)$ and $\frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)$ show that $\frac{\partial \bar{f}}{\partial z}=\frac{\bar{z}}{\partial z}$, where $f=u(x, y)+i v(x, y)$ and all first partials of u and v exist.
4. Using the Cauchy-Riemann conditions: (a) show that $f=2 x+i x y^{2}$ and $f=e^{x} e^{-i y}$ are differentiable nowhere. (b) Determine for what complex constants a, b, if any, the function $f=x^{2}+a x y+b y^{2}$ is differentiable everywhere. (c) Determine for what points (x, y) the function $f=(x-i y)\left(2-x^{2}-y^{2}\right)$ has a derivative.
5. Expressing $f^{\prime}=u_{x}+i v_{x}$ in terms of polar coordinates and using the polar form of the Cauchy-Riemann conditions, show that if f is differentiable at $z_{0}=r e^{i \theta_{0}}$ then

$$
f^{\prime}\left(z_{0}\right)=e^{-i \theta}\left(u_{r}+i v_{r}\right)=\frac{-i}{z_{0}}\left(u_{\theta}+i v_{\theta}\right)
$$

where the partials $u_{r}, v_{r}, u_{\theta}, v_{\theta}$ are evaluated at $\left(r_{0}, \theta_{0}\right)$.
6.*(A star on a problem indicates that it has been asked on the CIMS written examination in complex variables.) Let $f(z)$ be holomorphic on an open set S. Show that, if $|f(z)|=1$ on S, then f is a constant on S. Answer this in the following steps:
(a) Verify that $\frac{\partial \bar{f}}{\partial z}=0$ if f is an analytic function of z in $S, \frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right)$.
(b) Use $|f|^{2}=f \bar{f}$.
(c) Prove (6) in another way by differentiating $u^{2}+v^{2}$ with respect to x, y.

