1. (a) Find all values of z such that $e^{z-1}=1+i$.
(b) Let the function $f(z)=u(x, y)+i v(x, y)$ be analytic in some domain D. State why the functions $U(x, y)=e^{u(x, y)} \cos v(x, y), V(x, y)=e^{u(x, y)} \sin v(x, y)$ are conjugate harmonic functions on D. (You may use the fact that the real and imaginary parts of any analytic function are conjugate harmonic.)
2. a) Show that $\log (1-i)=\frac{1}{2} \ln 2-\frac{\pi}{4} i$; that $\log i=\left(\frac{1}{2}+2 n\right) \pi i, n$ any integer.
(b) Show that the set of values of $\log \left(i^{1 / 2}\right)$ is $(n+1 / 4) \pi i(n$ an integer) and that the same is true of $\frac{1}{2} \log i$. Show that the set of values of $\log \left(i^{2}\right)$ is not the same as the set of values of $2 \log i$.
3.* Find the real and imaginary parts of (a) $(1+i)^{i}$; (b) of $i^{z}, z=x+i y$.

In (4) and (5) below recall $\sin z=\sin x \cosh y+i \cos x \sinh y, \cos z=\cos x \cosh y-$ $i \sin x \sinh y$.
4. Using $\sin ^{2} x+\cos ^{2} x=1$ and $\cosh ^{2} y-\sin ^{2} y=1$ show that (a) $|\sin z|^{2}=\sin ^{2} x+$ $\sinh ^{2} y$, (b) $|\cos z|^{2}=\cos ^{2} x+\sinh ^{2} y$. Then show that (c)| $\left.\sin z\right|^{2}+|\cos z|^{2} \geq 1$, with equality if and only if z is real.
5. If $z=x+i y$ and $\tan z=R e^{i \theta}(R>0, \theta$ real $)$, show that

$$
\tan \theta=\frac{\sinh 2 y}{\sin 2 x}
$$

6. We define $w=\tan ^{-1} z$ as equivalent to $z=\frac{\sin w}{\cos w}$. Using this and the definitions of $\sin z, \cos z$ to show that

$$
\tan ^{-1} z=\frac{1}{2 i} \log \left(\frac{1+i z}{1-i z}\right) .
$$

Use this formula to show that

$$
\tan ^{-1} z_{1}+\tan ^{-1} z_{2}=\tan ^{-1}\left(\frac{z_{1}+z_{2}}{1-z_{1} z_{2}}\right) .
$$

