1. (a) Evaluate $\int_{1}^{2}\left(\frac{1}{t}-i\right)^{3} d t$.
(b) Verify that $\frac{d}{d t}\left(\frac{e^{i z t}}{i z}\right)=e^{i z t}, z \neq 0$. Use this to evacuate $\int_{-1}^{+1} e^{i z t} d t$.
2.

(a) Let $w(t)$ be a continuous complex-valued function of t defined on the interval $a \leq t \leq b$. By considering he special case $w=e^{i t}$ on the interval $0 \leq t \leq 2 \pi$, show that the mean value theorem for definite integrals is calculus does not apply in the complex case. That is, show that it need not be true that there is a real number c in $a \leq t \leq b$ such that

$$
\int_{a}^{b} w(t) d t=w(c)(b-a)
$$

(b) Suppose that a function $f(z)$ is analytic at a point $z_{0}=z\left(t_{0}\right)$ lying on a smooth $\operatorname{arc} z=z(t), a \leq t \leq b$. Show that if $w(t)=f[z(t)]$ then

$$
w^{\prime}(t)=f^{\prime}[z(t)] z^{\prime}(t)
$$

(Hint: Write $f(z)=u(x, y)+i v(x, y)$ an $z=x(t)+i y(t)$, so that $w(t)=u[x(t), y(t)]+$ $i v[x(t), y(t)]$. Then compute $w^{\prime}(t)$ using the chain rule and use the Cauchy-Riemann equations.)
3. Show that
(a) $\int_{C} \frac{z+2}{z} d z=4+2 \pi i$ when C is the semicircle $z=2 e^{i \theta},(\pi \leq \theta \leq 2 \pi)$.
(b) $\int_{C} \pi \exp (\pi \bar{z}) d z=4\left(e^{\pi}-1\right)$ when C is the boundary of the square with vertices at the points $0,1,1+i, i$ and the orientation of C is in the counterclockwise direction.
4. Evaluate $\int_{C} \log z d z$ where the principal branch $\log z$ is taken and C is $z=$ $2 e^{i t},-\pi / 2 \leq t \leq \pi / 2 . \log z=\ln r+i \Theta,-\pi<\Theta<\pi$.)
(a) Do this first as an integral with respect to t.
(b) Then do it using the antiderivative $F(z)=z \log z-z$, first verifying that this is indeed an antiderivative of $\log z$
5. Let C be an arc of the circle $|z|=R(R>1)$ of included angle $\pi / 3$. Show that

$$
\left|\int_{C} \frac{d z}{z^{3}+1}\right| \leq \frac{\pi}{3}\left(\frac{R}{R^{3}-1}\right)
$$

and deduce that $\lim _{R \rightarrow \infty} \int_{C} \frac{d z}{z^{3}+1}=0$.
6. Evaluate, using antiderivatives:
(a) $\int_{i}^{i / 2} z e^{2 z^{2}} d z$
(b) $\int_{0}^{\pi+2 i} \sin (z / 2) d z$
(c) $\int_{i}^{2} \frac{d z}{z^{2}}$ (any smooth arc avoiding the ori- gin).

