1. Problem 2, page 153 of text. (Recall, if f is analytic within the region bounded by two simple, closed, positively oriented contours, and is also analytic on the contours, then the integral of f is the same on each contour.)
2.* Evaluate

$$
I\left(z_{0}\right)=\int_{C} \frac{d z}{z-z_{0}}
$$

taken once around the contour shown in the figure, for all point z_{0} not on the contour. Be sure to consider z_{0} located in each of the regions $I, I I, I I I, I V$.
3. Problem 4, page 154.
4. If $P(z)$ is the polynomial $\Pi_{k=1}^{n}\left(z-z_{k}\right)$ where the z_{k} are complex numbers, and C is a simple closed contour containing all of the z_{k}, show that

$$
\int_{C} \frac{P^{\prime}(z)}{P(z)} d z=2 \pi i n
$$

5. By using the method and the rectangular contour of problem (3) above, applied now to the function $f(z)=\frac{1}{1+z^{2}}$, show that

$$
\int_{-\infty}^{+\infty} \frac{\left(1-b^{2}+x^{2}\right)}{\left(1-b^{2}+x^{2}\right)^{2}+4 b^{2} x^{2}} d x=\pi,
$$

where b is real and $0<b<1$. (Recall $\int \frac{1}{1+x^{2}} d x=\tan ^{-1} x$. Be sure to recognize integrals of functions which vanish by being odd in x. Also note that $\mid 1+a^{2}-y^{2}+2$ iay $\left|\geq\left|1+a^{2}-y^{2}\right| \geq\right.$ $1+a^{2}-b^{2}>0$ on the integrals on the vertical sides.)
6.* Evaluate

$$
\int_{0}^{\infty} \frac{\sin x}{\sqrt{x}} d x
$$

By integrating $\frac{e^{i z}}{\sqrt{z}}$ over the contour $C=C_{1}+C_{2}+C_{3}+C_{4}$ shown in the figure, involving arcs of radius ϵ and R, then letting $\epsilon \rightarrow 0$ and $R \rightarrow \infty$. (Hint: To estimate the integral C_{2} use $\sin \theta \geq$ $2 \theta / \pi, 0 \leq \theta \leq \pi / 2$. You should show that C_{4} vanishes as $\epsilon \rightarrow 0$ and that C_{2} vanishes as $R \rightarrow \infty$. Take $\sqrt{z}=\sqrt{r} e^{i \theta / 2}, 0 \leq \theta \leq \pi / 2$. You can check your result against $\int_{0}^{\infty} \sin \left(t^{2}\right) d t$ as done in class by a change of variables.)

