1. Problem 2, page 163 of text.
2. If the points $z=a$ and $z=b$ are inside the domain bounded by a simple closed contour C, show that

$$
\int_{C} \frac{e^{(z-a)(z-b)} d z}{(z-a)(z-b)}=0
$$

3. We showed in class the the Legendre polynomial $P_{n}(z)$ has the representation

$$
P_{n}(z)=\frac{1}{2 \pi i} \oint_{C} \frac{\left(s^{2}-1\right)^{n}}{2^{n}(s-z)^{n+1}} d s
$$

Here z lies within the positively oriented contour C. Show, by taking C to be of center z and radius $\sqrt{\left|z^{2}-1\right|}$, that

$$
P_{n}(z)=\frac{1}{\pi} \int_{0}^{\pi}\left(z+\sqrt{z^{2}-1} \cos \theta\right)^{n} d \theta .
$$

This is a formula given by Laplace. (Hint: Write $s=z+\rho e^{i \phi}, 0 \leq \phi \leq 2 \pi$. Also let $\sqrt{z^{2}-1}=\rho e^{i \alpha}$. Then arrange the integrand so that $\theta=\phi-\alpha$ is the parameter of the circular contour.)
4. Problem 1 page 171 of text.
5. Probem 4, page 172 of text.
6.** Let $f(z)$ be an entire function (i.e. analytic in the entire complex plane), and let $M(R)=$ $\max _{|z|=R}|f(z)|$, for $R>0$. Suppose that $M(2 R) \leq 2^{n} M(R)$ for all $R>0$, and for some positive integrer n. Show that then $f(z)$ is a polynomial of degree not exceeding n. (Note: "**" means this is a written comprehensive examination question just as presented there, with no hints. Try to solve it, but if you have problems go to the course web site to find a hint to one way to do it.)

