1. Problem 4, page 181 of text.
2. Problem 7, page 189 of text.
3. Find the Taylor series of $f=\frac{1}{2-z}$ about the point $z_{0}=i$. What is the radius R_{0} of the largest disk with center at i where within which the Taylor series converges?
4. Problem 6, page 198 of text.
5. The Bessel function $J_{n}(z)$ is defined as the nth coefficient ($n \geq 0$) of the "generating function"

$$
e^{\frac{z}{2}\left(t-\frac{1}{t}\right)}=\sum_{n=-\infty}^{\infty} J_{n}(z) t^{n} .
$$

From the integral giving the coefficients of a Laurent series show that

$$
J_{n}(z)=\frac{1}{\pi} \int_{0}^{\pi} \cos (n \theta-z \sin \theta) d \theta .
$$

6.* The Fibonacci numbers are defined by $c_{0}=0, c_{1}=1$ and $c_{n}=c_{n-1}+c_{n-2}, n=2,3, \ldots$. Show that, in a certain disk $|z|<R$, the series $\sum_{n=0}^{\infty} c_{n} z^{n}$ is the Maclaurin series of a rational function $f(z)$ of z (i.e. is a quotient of polynomials in z). Find an explicit expression for c_{n}. What is the largest possible value of R ? (Hint: assuming that $\sum_{n=0}^{\infty} c_{n} z^{n}$ converges absolutely, show that $f(z)=z+z f(z)+z^{2} f(z)$. Then use a partial fraction decomposition of $\left(1-z-z^{2}\right)^{-1}=$ $-\left(z-z_{1}\right)^{-1}\left(z-z_{2}\right)^{-1}$ to find an expression for the c_{n}. Here z_{1}, z_{2} are the roots of $z^{2}+z-1=0$.)

