1. Problem 3, page 213 of text.
2. Show that

$$
\frac{z}{(1-z)^{2}}=\sum_{n=1}^{\infty} n z^{n}, \quad|z|<1 .
$$

3. Problem 6, page 213 of text.
4. Problem 8, page 220 of text.
5. Show that the function

$$
f(z)= \begin{cases}\frac{e^{N z}-e^{z}}{e^{z}-1} & \text { if } z \neq 0 \\ N-1 & \text { if } z=0,\end{cases}
$$

where N is a positive integer, is entire, and has a expansion

$$
f(z)=\sum_{m=0}^{\infty} \frac{c_{m}}{m!} z^{m},
$$

where $c_{m}=\sum_{k=1}^{N-1} k^{m}$. Use your result to obtain the formula

$$
\sum_{k=1}^{N-1} k^{2}=\frac{N(N-1)(2 N-1)}{6}
$$

6. Show that the coefficients of the power series expansion

$$
e^{2 t z-z^{2}}=\sum_{n=0}^{\infty} \frac{H_{n}(t)}{n!} z^{n}
$$

are polynomials of degree n, and derive the identity

$$
H_{n+1}(t)-2 t N_{n}(t)+2 n H_{n-1}(t)=0, \quad n \geq 1 .
$$

(Hint: For the latter, differentiate.The H_{n} are called Hermite polynomials.)

