Complex Variables I

Review Problems

1. Find all values of $\sqrt{1-\sqrt{3} i}$, of $\log (\sqrt{i})$, and of i^{i}.
2. Sketch the region $\operatorname{Re}(1 / z) \leq 1 / 2$.
3. Which of he following are analytic functions of $z: f=x^{2}+i y^{2}, f=$ $x^{2}-y^{2}+i 2 x y, e^{y}(\cos x+i \sin x)$.
4. Let f be an entire function such that $|f| \leq R$ on $|z|=R, R>0$ arbitrary. Prove that $f=a z+b$ for some complex numbers a, b.
5. (a) Evaluate

$$
\oint z^{2} \sin (1 / z) d z
$$

taken once in the positive sense around $|z|=1$.
(b)Evaluate

$$
\oint_{C} \frac{\cosh z}{z \sinh ^{2} z} d z
$$

where C is the circle $|z-i|=4$ with positive orientation.
6. Find the Laurent series about $z=0$ valid in the annulus $1<|z|<2$, for the function $f=\frac{1}{(z+1)(z+2)}$.
7. By summing, determine the function $f(z)$ with the Laurent expansion

$$
f(z)=\sum_{n=0}^{\infty}(z / 2)^{n}+\sum_{n=1}^{\infty}(1 / z)^{n} .
$$

What is the Laurent expansion of $f(z)$ in $|z|>2$? What is the series, in powers of $z-i$, which converges to f in the disk $|z-i|<\sqrt{2}$?
8. If a is a complex number such that $\operatorname{Re}(a)>1$, show that

$$
\frac{2}{1-z^{2}}=\sum_{n=1}^{\infty}(-1)^{n} \frac{(a-1)^{n-1}}{(z-a)^{n}}+\sum_{n=0}^{\infty}(-1)^{n} \frac{(z-a)^{n}}{(a+1)^{n}}
$$

for all z satisfying $|a-1|<|z-a|<|a+1|$.
9. Show that, is $|z|<1$,

$$
\frac{z}{(1-z)^{2}}=\sum_{n=1}^{\infty} n z^{n}
$$

10. Let $f(z)$ be analytic everywhere except possibly at z_{0}. Describe precisely what is meant by the following additional properties:
(a) f has a residue 2 at z_{0}.
(b) f has an essential singularity at z_{0}.
(c) f has a removable singularity at z_{0}.
(d) f has a pole of order 7 at z_{0}.
(e) f is entire.
11. Using residue theory, evaluate $\int_{0}^{\infty} \frac{1}{1+x^{3}}$. (Your contour should include a portion of $\theta=2 \pi / 3$.)
12. Let $P(z)=a_{0}+a_{1} z+\ldots+a_{n} z^{n}, a_{n} \neq 0$ be a polynomial of degree n, and $Q(z)=b_{0}+b_{1} z+\ldots+b_{m} z^{m}, b_{m} \neq 0$ is a polynomial of degree $m \geq n+2$. Show that, if all the zeros of $Q(z)$ are interior to the simple closed contour C, then

$$
\int_{C} \frac{P(z)}{Q(z)} d z=0
$$

13. Using residue theory, show that

$$
\int_{0}^{\infty} \frac{\ln x}{x^{2}+a^{2}} d x=\pi \frac{\ln a}{2 a}, a>0
$$

(use an indented contour.)
14. Problem 5, page 265 of text.
15.Problem 5 page 276 of text.
16. Suppose the function $f(z)$ is analytic for $|z|<2$. Show that, for ϵ sufficiently small, $z-\epsilon f(z)$ has exactly one solution in $|z|<1$. Suppose you know additionally that $\mid f(z) \leq 5$ on $|z|=1$. How small must ϵ be to insure that f has exactly one solution in $|z|<1$?
17. Find the number of roots (counting multiplicities) of $z^{8}-4 z^{5}+z^{2}-1=0$ lying in the disk $|z|<1$. How many roots lie in the disk $|z|<2 \mid$?

