
Fluid Dynamics II PROBLEM SET 1 Due February 8, 204

1. We asserted in class that φ = µ
2 (∂ui/∂xj − ∂uj/∂xi)2 − 2µ

3 (∇ · �u)2 is non-negative. Prove this.

2. Show that for a perfect gas, another form of the energy equation for a viscous, heat conducting fluid
is

ρcv
DT

Dt
− p

ρ

Dρ

Dt
= φ + ∇ · k∇T.

(Hint: Start with dS =
(

∂S
∂T

)
v
dT +

(
∂S
∂v

)
T
dv.)

3. Show that for an inviscid gas with zero heat conductivity, (i.e. µ = k = 0), the energy equation may
be written

∂ρe

∂t
+ ∇ · [�u(ρe + p)] = 0.

4. (a) Show that

cp − cv = T
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)
v

(
∂v
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)
p

(Hint: Regarding s as a function of T, v, ds = ( ∂s
∂T )vdT + ( ∂s

∂v )T dv, from which we can get an expression
for

(
∂s
∂T

)
p
. Now use T ( ∂s

∂T )p = cp, T ( ∂s
∂T )v = cv, and a Maxwell relation.) Show that, for a perfect gas, this

relation gives R = cp − cv.
(b) Show that for a perfect gas (

∂p

∂ρ

)
s

= γRT.

Note that this quantity equals c2 where c is the speed of sound under isentropic conditions.

5. For the study of thermal convection in water, it is usually assumed that the fluid density is a function
of temperature alone. The energy equation is then usually approximated as a temperature equation of the
form

ρcp
DT

Dt
−∇ · k∇T = 0.

Justify this as an approximation to the energy equation given in class, namely

ρcpDT/Dt − ρT (∂v/∂T )pDp/Dt = φ + ∇ · k∇T.

You should make use of the data for water at 20oC given on pages 596 and 597 of Batchelor. (Note β =
v−1(∂v/∂T )p and our k is the same as Batchelor’s kH .) Assume a characteristic fluid speed is U ≈ 1 cm/sec,
in a fluid layer of thickness L ≈ 1 cm. That is, use U, L to estimate terms involving spatial derivatives and
velocity. Also take L/U as a characteristic timescale, one dyne/cm2as a characteristic pressure, and 10oC
as typical of T and it’s variations. (Note 1 joule= 107 dyne-cm.) Note that the heat conduction term is
retained, even though relatively small, because it can be important in boundary layers.

6. For a perfect gas, cv, cp are functions of T alone and so e =
∫

cvdT . Also then cp − cv = R =
constant. Using these facts show that for steady flow of a perfect gas Bernoulli’s theorem may be written
1
2u2 +

∫
cp(T )dT + Ψ = constant on streamlines.


