1. We asserted in class that $\phi=\frac{\mu}{2}\left(\partial u_{i} / \partial x_{j}-\partial u_{j} / \partial x_{i}\right)^{2}-\frac{2 \mu}{3}(\nabla \cdot \vec{u})^{2}$ is non-negative. Prove this.
2. Show that for a perfect gas, another form of the energy equation for a viscous, heat conducting fluid is

$$
\rho c_{v} \frac{D T}{D t}-\frac{p}{\rho} \frac{D \rho}{D t}=\phi+\nabla \cdot k \nabla T
$$

(Hint: Start with $d S=\left(\frac{\partial S}{\partial T}\right)_{v} d T+\left(\frac{\partial S}{\partial v}\right)_{T} d v$.)
3. Show that for an inviscid gas with zero heat conductivity, (i.e. $\mu=k=0$), the energy equation may be written

$$
\frac{\partial \rho e}{\partial t}+\nabla \cdot(\vec{u} \rho e)=-p \nabla \cdot \vec{u}
$$

4. (a) Show that

$$
c_{p}-c_{v}=T\left(\frac{\partial p}{\partial T}\right)_{v}\left(\frac{\partial v}{\partial T}\right)_{p}
$$

(Hint: Regarding s as a function of $T, v, d s=\left(\frac{\partial s}{\partial T}\right)_{v} d T+\left(\frac{\partial s}{\partial v}\right)_{T} d v$, from which we can get an expression for $\left(\frac{\partial s}{\partial T}\right)_{p}$. Now use $T\left(\frac{\partial s}{\partial T}\right)_{p}=c_{p}, T\left(\frac{\partial s}{\partial T}\right)_{v}=c_{v}$, and a Maxwell relation.) Show that, for a perfect gas, this relation gives $R=c_{p}-c_{v}$.
(b) Show that for a perfect gas

$$
\left(\frac{\partial p}{\partial \rho}\right)_{s}=\gamma R T
$$

Note that this quantity equals c^{2} where c is the speed of sound under isentropic conditions.
5. For the study of thermal convection in water, it is usually assumed that the fluid density is a function of temperature alone. The energy equation is then usually approximated as a temperature equation of the form

$$
\rho c_{p} \frac{D T}{D t}-\nabla \cdot k \nabla T=0
$$

Justify this as an approximation to the energy equation given in class, namely

$$
\rho c_{p} D T / D t-\rho T(\partial v / \partial T)_{p} D p / D t=\phi+\nabla \cdot k \nabla T .
$$

You should make use of the data for water at $20^{\circ} C$ given on pages 596 and 597 of Batchelor. (Note $\beta=$ $v^{-1}(\partial v / \partial T)_{p}$ and our k is the same as Batchelor's k_{H}.) Assume a characteristic fluid speed is $U \approx 1 \mathrm{~cm} / \mathrm{sec}$, in a fluid layer of thickness $L \approx 1 \mathrm{~cm}$. That is, use U, L to estimate terms involving spatial derivatives and velocity. Also take L / U as a characteristic timescale, one $d y n e / \mathrm{cm}^{2}$ as a characteristic pressure, and $10^{\circ} \mathrm{C}$ as typical of T and it's variations. (Note 1 joule $=10^{7}$ dyne-cm.) Note that the heat conduction term is retained, even though relatively small, because it can be important in boundary layers.
6. For a perfect gas, c_{v}, c_{p} are functions of T alone and so $e=\int c_{v} d T$. Also then $c_{p}-c_{v}=R=$ constant. Using these facts show that for steady flow of a perfect gas Bernoulli's theorem may be written $\frac{1}{2} u^{2}+\int c p(T) d T+\Psi=$ constant on streamlines.

