1. Show that a solution of $\beta^{2} \phi_{z z}-\phi_{r r}-r^{-1} \phi_{r}=0, \beta=\sqrt{M^{2}-1}$ in the supersonic case, is given by

$$
\phi=\int_{0}^{z-\beta r} \frac{f(\zeta)}{\sqrt{(z-\zeta)^{2}-\beta^{2} r^{2}}} d \zeta
$$

where we assume $f(0)=0$. Do this by setting $\zeta=z-\beta r \cosh \lambda$ to obtain

$$
\phi=\int_{0}^{\cosh ^{-1}(z / \beta r)} f(z-\beta r \cosh \lambda) d \lambda
$$

then carrying out the needed differentiations.
2. Consider unsteady one-dimensional flow of a polytropic gas. The hodograph transformation of gas dynamics takes x, t as dependent variables rather than u, ρ. Using the transformation of partials given by

$$
\left(\begin{array}{ll}
u_{x} & u_{t} \\
\rho_{x} & \rho_{t}
\end{array}\right)=\left(\begin{array}{cc}
x_{u} & x_{\rho} \\
t_{u} & t_{\rho}
\end{array}\right)^{-1}=\frac{1}{J}\left(\begin{array}{cc}
t_{\rho} & -x_{\rho} \\
-t_{u} & x_{u}
\end{array}\right)
$$

where $J=x_{u} t_{\rho}-x_{\rho} t_{u}$, show that the equations for u, ρ in homentropic flow are transformed into

$$
C w_{\rho}+D w_{u}=0
$$

where $w=(x, t)^{T}$ and C, D are matrix functions of u, ρ. These are the hodograph equations. From the eigenvalues of $C^{-1} D$ determine the charateristic curves for the hodograph equations. Hence show that the latter are curves of constant Riemann invariant $F_{ \pm}$.
3.Consider the wave equation $u_{t}+(F(u))_{x}=0$ with $F(u)=u(1-u)$. Describe the shock solution which results for the initial conditions $u=1 / 4, x<0,=1 / 2, x>0$. Give the shock speed, and sketch characteristics and shock position in the x-t plane.
4. Sketch the $x-t$ plane and determine explicitly the path of the shock wave for the following IVP:

$$
u_{t}+u u_{x}=0, \quad u(x, 0)= \begin{cases}1+x, & -1 \leq x \leq 0 \\ 1-x, & 0 \leq x \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

5. Consider the Burgers viscous equation in the form

$$
\left(\frac{\partial}{\partial t}+c_{0} \frac{\partial}{\partial x}\right) u+\frac{\gamma+1}{2} u \frac{\partial u}{\partial x}-\frac{2 \mu}{3} \frac{\partial^{2} u}{\partial x^{2}}=0 .
$$

Find a solution of the form $u=\frac{2}{\gamma+1} F\left(x-c_{0} t\right)$ representing a smooth transition from slightly subsonic velocity at $x=-\infty$ to slightly supersonic velocity at $x=+\infty$. Compute the viscous dissipation in the structure. (Note that the dissipation is independent of viscosity. This solution correctly describes the structure of a normal shock wave allowing for viscous stresses but neglecting thermal conductivity. Optional research problem: find the analogous solution including thermal conductivity.)

