1. Derive the shock polar relation for oblique shocks,

$$
v_{2}^{2}=\frac{\left(u_{1} u_{2}-c_{*}^{2}\right)\left(u_{1}-u_{2}\right)^{2}}{\frac{2}{\gamma+1} u_{1}^{2}-u_{1} u_{2}+c_{*}^{2}}
$$

2. Suppose a steady 2D flow of a polytropic gas at Mach number 2, adjacent to a plane wall, encounters an abrupt bend of the wall by -30°, producing an expansion fan. What is the Mach number downstream of this corner?
3. This is a problem for exploring the interesting phenomenon of sound generated by fluid flow (e.g. the bubbling of a brook or the sound of an air jet). (The pioneering work of Lighthill on this subject is surveyed by Ffowcs-Williams in Ann. Rev. Fluid Dyn. 1, 197-222, which is on reserve.)

To study the sound generated aerodynamically in a fluid, assume that the density is $\rho=\rho_{0}+\rho^{\prime}$ and similarly for p, where ρ_{0}, p_{0} are constants and $\rho^{\prime} \approx p^{\prime} / c_{0}^{2}$. For an inviscid gas, show that the equations of mass and momentum may then be combined to obtain a equation of the form

$$
\frac{1}{c_{0}^{2}} \frac{\partial^{2} p}{\partial t^{2}}-\nabla^{2} p=F
$$

Find the form of F in terms of ρ and \mathbf{u} and their derivatives. What form is taken by F if we have $\rho \approx \rho_{0}$ and \mathbf{u} is taken to have zero divergence? (See also L\&L $\S 75$ for additional results.)

