Complex Variables I Final examination December 19, 1006 ANSWER ALL QUESTIONS. JUSTIFY YOUR ANSWERS.

1. (25 points):
(a) Find the real and imaginary parts of $\frac{3-2 i}{1-4 i}$.
(b) What are the three values of $(1+i)^{1 / 3}$, expressed in the form $r_{k} e^{i \theta_{k}}, k=1,2,3$?
(c) Sketch or describe the region of the z-plane determined by the inequality $\left|\frac{1}{1-z}\right|>2$.
(d) Classify the singularities of $f(z)=\frac{e^{\frac{1}{1-z}}}{\left(1+z^{2}\right)^{3}}$.
(e) In the following, can f be an entire function of z ? If so, what is $v(x, y)$?

$$
\text { (i) } f=2 x y+i v(x, y), \quad(i i) f=x y^{2}+i v(x, y)
$$

2. (15 points) Prove the following: If $f(z)$ is analytic within and on the circle $|z|=1$ and $|f(z)| \leq 1$ on $|z|=1$, then $\left|f^{\prime}(0)\right| \leq 1$.
3. (15 points) (a) Compute the Laurent expansion of $f(z)=\frac{1}{(2 z+1)(z-1)^{2}}$ about $z=1$ that is valid in $|z-1|<R, R$ a suffieicently small positive number; (b) What is the largest R such that the expansion in (a) represents the function in the open disc $|z-1|<R$? (c) Compute the Laurent expansion of $f(z)$ about $z=1$ valid in the region $|z-1|>R_{\max }$, where $R_{\max }$ is the number found in (b).
4. Evaluate (15 points)

$$
\oint_{|z|=2} \frac{1+z^{2}}{(1-z)^{3}} d z
$$

where the integral is taken once around the circle in the clockwise direction.
5. (15 points) Determine, using Rouché's theorem, the number of zeros (counting multiplicities) of $z^{5}+3 z^{2}-1$ in the annulus $1<|z|<2$. (Hint: consider the regions $|z|<2$ and $\mid z<1$ separately.)
6. (15 points) Evaluate using residue theory

$$
I=\int_{0}^{\infty} \frac{\sin x}{x\left(1+x^{2}\right)} d x
$$

