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1 Lecture 9: The Riemann mapping theorem

These notes will contain material you should know from the final lectures of the
course, which will be drawn from sources other than the text.

The Riemann mapping theorem is a key theoretical result in complex anal-
ysis. The basic question is to determine the existence of conformal maps be-
tween two general domains D,D′/-. The simplest formulation is for two simply-
connected domains. We can also simplify this to the existence of a map from the
interior of a general simply-connected domain D onto the unit disk |z| < 1. A
variant is the existence of a map for the exterior of a simply-connected domain
D onto the exterior of the slit |x| < 1, y = 0. Since a conformal map of a con-
formal map is conformal, we can get from D to D′ via one of these “canonical”
domains, e.g. the interior of the unit disk.

1.1 The Schwarz lemma

It is of interest to ask, as a preliminary question, just what are the maps which
take the unit disk onto itself, That is, what are the maps which carry the unit
disk |z| < 1 onto itself in a one-one fashion. We have seen in an earlier lecture
that there is a class of linear transformations which do this, namely

w = eiβ
z − α

1 − ᾱz
, (1)

where β is an arbitrary real number and α is an arbitrary complex number.
Thus there is at least a three-parameter family of such maps, for the case where
D is also the unit disk. The Schwarz lemma will help us pin this class of maps
down completely.

Lemma 1 Let f(z) be analytic and |f(z)| ≤ 1 for |z| < 1. If f(0) = 0, then
|f(z)| ≤ |z|. Also ,if |f(z0)| = |z0| for some z0 in the disk, then f(z) = kz for
some k with |k| = 1.

Note that this says that a bounded (by 1) analytic function which is known to
have somewhere a value (here 0) smaller than the bound, then the bound on
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the function can be improved. The proof is quite simple. If 0 < r < 1, it follows
from the maximum principle and the assumed bound on |f(z)| that

∣∣∣f(z)
z

∣∣∣ ≤ 1
r
, |z| < r. (2)

Since r can be made as close as we like to 1, we have
∣∣∣f(z)
z

∣∣∣ ≤ 1, |z| < 1. (3)

Thus |f(z)| ≤ |z| as stated. If equality holds at a point in |z| < 1, then by the
maximum principle |f(z)/z| is constant over the disk, yielding f(z) = kz.

As an application of the Schwarz lemma we will fully characterize all con-
formal maps which take the unit disk onto itself.

Lemma 2 Any one-to-one conformal map of the unit disk onto itself is given
by a linear map of the form (1) with |α| < 1.

To prove this let such a map be f(z), and set

g(z) =
f(z) − f(0)
1 − f(0)f(z)

. (4)

Now on the boundary |f | = 1 and therefore |g| = 1. By the maximum principle
|g| ≤ 1 in |z| < 1. Also g(0) = 0. Thus, by the Schwarz lemma, |g(z) ≤ |z|.
Since in fact |g| = 1 everywhere on the boundary, it follows that g(z) = eiβz.
Solving for f , we obtain (1) with α = −f(0)e−iβ .

We can thus see that in the case where D=D′= unit disk, we have a three-
parameter family of maps with parameters α (real and imaginary parts counted
separately), and β. If we want to restrict the maps considered so that the
answer is unique, we can impose three conditions. These are often determined
by choosing a point ζ in the unit disk and requiring that f(ζ) = 0 and f ′(ζ) be
real positive. This effectively sets α = ζ and β = 0 (since the derivative at ζ is
easily seen to be eiβ/(1 − |ζ|2)).

1.2 A perturbation problem

Before considering the Riemann mapping theorem for simply-connected do-
mains, it is instructive to consider a related perturbation problem. Suppose
D is the simply-connected domain whose boundary in polar coordinates is given
by r = R(θ) = 1 − εg(θ), 0 ≤ θ < 2π. Here ε is a small number, and 0 < g < 1.
The idea is that to map this domain onto the unit disk, we only have to change
it slightly by expanding outward a small distance along each radial line. Thus
we would expect a mapping which does this to be close to the identity. We
accordingly set

f(z) = z(1 + εA1 + ε2A2 + . . .), Aj =
∞∑

n=0

ajnz
n. (5)
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We now impose the condition that |f | = 1 on r = R(θ), 0 ≤ θ < 2π. Thus we
set ∣∣∣eiθ(1 − εg(θ))[1 + εA1 + ε2A2 + . . .]z=eiθ(1−εg(θ))

∣∣∣ = 1. (6)

To make the terms in ε cancel out, we see that we must have

g(θ) = <
∞∑

n=0

a1ne
inθ, a1n = αn + iβn. (7)

The we see that f(0) = 0 and that, through terms of order ε, f ′(0) = 1 + εa10.
If we want this positive, then β0 = 0. We also see that α0 determines the
“expansion factor” to order ε. This suggests that the desired map will maximize
f ′0). One could study this further by going to higher powers of ε.

1.3 The main theorem

Theorem 1 (Riemann mapping theorem) If D,D′ are both simply-connected
domains possessing more then one boundary point, there always exists an ana-
lytic function which maps D conformally onto D′ in a one-one manner.

Remarks: In fact there exists always a 3-parameter family of such maps,
but the results becomes unique if we require e.g. that f(ζ) = 0, f ′(ζ) > 0,
with |ζ| ∈ D. Also to get from D to D′ we can map D and D′ onto the unit
disk, since a composition of conformal maps is conformal. Finally, at least two
boundary points are needed, since otherwise the boundary could be the point
at infinity, and the desired mapping function would then satisfy |f(z)| < 1 at
all finite points z, implying, by Liouville’s theorem, that f =constant.

We can thus reformulate the mapping theorem as follows:

Theorem 2 If D is a simply-connected domain with more than one boundary
point, and ζ is a point in D, then there exists a unique function w = f(z)
which is analytic in D and maps D conformally onto the unit disk |w| < 1, with
f(ζ) = 0, f ′(ζ) > 0.

We now give some but not all of the steps in a proof of Theorem 2 (Reference:
Nehari’s Complex Analysis, pp. 181-187. The idea is to obtain the desired
mapping as the solution of an extremal problem wherein f ′(ζ) is maximized.
The steps are as follows:

(i) Introduce a set B of functions from which the desired map will be found.
(ii) Show that B is not empty.
(iii) Show that if F ∈ B is not the mapping function (i.e. some point of

the unit disk has no pre-image in D), then we can find a G ∈ B such that
G′(ζ) > F ′(ζ).

(iv) Construct a sequence of functions Fn ∈ B such that F ′
n+1(ζ) > F ′

n(ζ),
which converges to the desired mapping function.

We shall consider the first three steps but not the fourth.
The set B will be the functions F (z) which are analytic and one-one on D,

and satisfy |F (z)| < 1 on D. Given a point ζ of D, the functions of B also
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satisfy F (ζ) = 0, F ′(ζ) > 0. Evidently the desired mapping function belongs to
B.

We first note

Lemma 3 The desired mapping function w = f(z) is distinguished by being an
element of B with the largest derivative at ζ.

To prove this consider the function p(w) = F (f−1(w)), where F is any function
of B and f is the desired mapping function. Since f−1(0) = ζ and F (ζ) = 0,
we see that p(0) = 0. Also |p(w)| < 1 since |F (z)| < 1. By the Schwarz lemma
|p(w)/w| < 1 and therefore, letting w → 0, |p′(0)| < 1. But we see (cf. problem
1 of set 8) that

p′(0) =
F ′(ζ)
f ′(ζ)

, (8)

and so f ′(ζ) > F ′(ζ).
Now consider (ii). Let a, b be two boundary points of D, and set

u(z) =
√
z − a

z − b
. (9)

Here we take one of the two branches of the square root on D. Since u2(z1) =
u2(z2) implies z1 = z2, we see that u is one-one. Also, if A is any complex
number, the two values ±A cannot both be taken on D. Now if z1 is a point of
D and w1 = u(z1), there is a small neighborhood of z1 lying in D mapping into
|w − w1| < γ, γ > 0. Thus the values w : |w + w1| < γ cannot be assumeD by
u(z) on D. Thus

f0(z) =
γ

u(z) + w1
(10)

satisfies |f0(z)| < 1 on D and is one-one there.
To satisfy the remaining conditions for B we set

f1(z) =
|f ′0(ζ)|
f ′0(ζ)

( f0(z) − f0(ζ)
1 − f0(ζ)f0(z)

)
. (11)

Since the linear transformation eiβ
(
w−α
1−ᾱw

)
maps the unit disk into itself, we see

the |f1(z)| < 1 on D, f1(ζ) = 0, and it is easy to check that F ′(ζ) > 0. Thus
f1 ∈ B and so B is not empty.

Now consider (iii). Suppose that F (z) ∈ B is not the desired mapping
function. Then there is a point α, |α| < 1, such that F (z) 6= α on D. Set

φ(z) =

√
α− F (z)
1 − ᾱF (z)

, (12)

H(z) =
√
α− φ(z)

1−
√
αφ(z)

, (13)
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G(z) =
|H ′(ζ)|
H ′(ζ)

H(z). (14)

From |F (z)| < 1 it follows that φ and G satisfy the same inequality, |G(z)| < 1.
Also it can be shown (Problem 2 of set 8) that

G′(ζ) = |H ′(ζ)| =
1 + |α|
2
√
|α|

F ′(ζ) > F ′(ζ). (15)

Step (iv) is a bit involved but the idea should be clear, to keep finding
alphas whose moduli converge to 1 and simultaneously constructing functions
G(z) whose derivative at ζ is monotone increasing. With a little work one can
prove the existence of a sequence of functions converging to the desired unique
mapping function.

2 Lecture 10: Asymptotic exapansions of inte-
grals

2.1 Asymptotic expansions

In many practical problems exact solutions are difficult to obtain in closed form
but approximate solutions can be computes without too much difficulty. The
precise meaning of “approximate” needs to be clarified. For example a complex-
valued function of z defined in some domain D may be studied near a point
z0 ∈ D. Suppose that f(z0) = 0 and the zero is second order. The order symbol
O is useful for expressing this point, i.e.

f(z) = O((z − z0)2), z → z0. (16)

If f is analytic at z0 then g(z) = f ′(z0)(z − z0) clearly approximates f near z0.
We can express this using the “O”-symbol as

f(z) − g(z) = O((z − z0)2), z → z0. (17)

We can also make use of an order symbol which indicates“smaller order”. This
is the “o” symbol. To express the fact the RHS of the last expression is smaller
than the size of g we can write

f(z) − g(z) = o(z − z0), z → z0. (18)

We now define these symbols precisely. We say that φ(z) = O(ψ(z)) as
z → z0 in D provided that there exists a positive number A and neighborhood
N of z0 such that |φ(z)| ≤ A|ψ(z)| provided z ∈ N ∩D.

Similarly we say that φ(z) = o(ψ(z)) as z → z0 provided that, for any
positive number ε there is a neighborhood Nε of z0 such that |φ(z)| ≤ ε|ψ(z)|
provided z ∈ Nε ∩D. Note that this really is saying that |φ/ψ| → 0 as z → z0
in D.
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Note that z might be a variable in a problem, or a parameter, real or complex.
z0 could be zero or the point at infinity. The restriction to a domain D is
important. Often this is a sector of the z-plane, α ≤ arg(z) ≤ β. For example
ez = o(zn), z → ∞, z ∈ S, where S : π/2 + ε ≤ arg(z) ≤ 3π/2 − ε for any
integer n and positive ε.

Often one has a function f of z and a real parameter ε, and an approximating
function to f(z, ε) is sought valid as ε → 0. Often powers of ε are involved. Then
an asymptotic series approximation GN (z, ε) to f might have the form

GN = g0(z) + εg1(z) + . . .+ εNgN (z), (19)

with the property that

f(z, ε) − g(z, ε) = O(εN+1) = o(εN ), ε→ 0. (20)

Note that we do not assume anything about the convergence of the sequence
gN as N → ∞. I can certainly happen that there is no convergence, even
though for each N the asymptotic property holds. This is a basic difference
between convergent infinite series and asymptotic series whose partial sums
form asymptotic approximations.

Example 1: Consider the integral

f(z) =
∫ ∞

0

e−t

1 + zt
dt. (21)

We are interested in the behavior of this integral as z → 0 in the domain
−π + ε ≤ arg z < π − ε. One method useful for some integrals of this type
involves repeated integration by parts. We see that

f(z) = − e−t

1 + zt

∣∣∞
0

− z

∫ ∞

0

e−t

(1 + zt)2
dt, (22)

= 1 − z + 2z2

∫ ∞

0

e−t

(1 + zt)3
dt = . . . (23)

=
m∑

n=0

(−1)nn!zn + (−1)m+1(m + 1)!zm+1

∫ ∞

0

e−t

(1 + zt)m+2
dt. (24)

By writing z = reiθ an determining the maximum value of |1 + zt|−1 we have

∣∣∣
∫ ∞

0

e−t

(1 + zt)m+2
dt.

∣∣∣ < (sin ε)−(m+2), (25)

which is O(1) as z → 0. Thus the series gm =
∑m
n=0(−1)nn!zn is asymptotic

to f(z) as z → 0 with an error O(zm+1). Note that gm is horibly divergent as
m → ∞.

Example 2: We study

I(k) =
∫ ∞

k

e−t

t
dt (26)
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in the limit k → +∞. After integrating by parts N times we obtain

I(k) = e−k
[1
k
− 1
k2

+
2!
k3

− . . .+
(−1)N−1(N − 1)!

kN

]
+ (−1)NN !

∫ ∞

k

e−t

tN+1
dt.

(27)
Since ∣∣∣(−1)NN !

∫ ∞

k

e−t

tN+1
dt

∣∣∣ ≤ e−k/kN+1 (28)

we see that we have an asmptotic expansion of I(k) . Again the infinite series
being developed here is not convergent for any finite k.

2.2 The method of stationary phase

We now come to an interesting and useful example of asymptotic approxima-
tion to a complex-valued function represented by an integral. Examples of this
kind arise frequently in the theory of wave propagation. Consider the partial-
differential equation i real x, t representing one-dimensional space and time.

∂u

∂t
− ∂3u

∂x3
= 0. (29)

One way to find solutions is to make use of complex exponentials and substitute
a function of the form

u = f(λ)ei(ωt+λx). (30)

Here λ and ω are real parameters. Physically ω
2π

is a frequency and 2π/λ is a
wavelength. Substituing into (29) we see that fi(ω + λ3) = 0, which implies
that ω = −λ3. We can thus obtain a large class of solutions by continuously
combining the solutions of various λ. In particular for smooth λ we can obtain
a solution as an integral,

u =
∫ b

a

f(λ)ei(λx−λ
3t)dλ. (31)

The question we want to answer here concerns the behavior of (31) as t → ∞
with x/t fixed. Physically, the question is to determine the wave structure seen
at large times by an observer moving with velocity x/t. We can think of the
general case as an integral with the structure

u =
∫ b

a

f(λ)eitφ(λ)dλ, t → ∞. (32)

Consider first the special case where φ = λ2, f = 1, a = −1, b = 1. We then
have the integral

∫ 1

−1

eitλ
2
dλ =

∫ +∞

−∞
eitλ

2
dλ− I+ − I−, (33)
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where

I+ =
∫ ∞

1

eitλ
2
dλ.I− =

∫ −1

−∞
eitλ

2
dλ. (34)

Now ∫ +∞

−∞
eitλ

2
dλ =

1√
t

∫ +∞

−∞
eix

2
dx =

1√
t

√
πeiπ/4. (35)

(Recall that we can compute
∫ ∞
0

(cos(x2), sin(x2))dx by integrating eiz
2

around
the contour going from origin to (R, 0), then along the circle |z| = R to Reiπ/4,
then to the origin along the ray arg z = π/4, see page 266 of text.)

We will now show that the contribution just computed dominates over the
contributions from I±. For I+ we note that, by integration by parts

I+ = − eit

2it
+

1
2it

∫ ∞

1

λ−2eiλ
2tdλ. (36)

It follows that |I+| ≤ 1
2t(1 +

∫ ∞
1
λ−2dλ = 1/t. The same estimate holds for I−.

Thus
|I±| = O(t−1), t → ∞. (37)

The dominant contribution, of order 1/
√
t comes from the integral whose domain

covers the point λ = 0 where λ2 has its derivative equal to zero. In other
words, as λ varies under the integral, the function φ(λ) is steadily changing as
long as φ′ does not vanish. Therefore as long as this is the case the function
eitφ(λ) will oscillate, and since t is large it will oscillate rapidly. The effect is
to cause significant cancelation from the positive and negative contributions to
the integral, over the domain of integration where φ′ 6= 0. As for the effect of
f(λ), the number of continuous derivatives that it has will determine the extent
of the integrations by parts that can be performed on the interval where φ′ does
not vanish. When these contributions remain sub-dominant the main effect of
f on the dominant contribution comes from the behavior of f at the point of
vanishing of φ′.

At a point where φ′ vanishes we say that the phase of eitφ is stationary,
hence the name of this method.

We now calculate formally the dominant contribution to (32) as t → ∞,
based on the above examples and ideas. We assume that φ′ has a unique zero
λ = c in (a, b), and that φ′′(c) 6= 0. We will use the symbol ∼ to indicated
the leading term of an asymptotic approximation. We then claim that under
suitable conditions on f we will have

∫ b

a

f(λ)eitφ(λ)dλ ∼ f(c)eitφ(c)

∫ +∞

−∞
eitφ

′′(c)(λ−c)2dλ, t→ ∞. (38)

We thus obtain
∫ b

a

f(λ)eitφ(λ)dλ ∼ f(c)eitφ(c)

√
πe

iπ
4 sgn(φ′′(c))

√
|φ′′(c)|t

, t→ ∞. (39)
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In particular, this result hold if f, φ are infinitely differentiable on (a, b), f
vanishes to all orders at a, b, and f(c) 6= 0, the error then being O(1/t). Clearly
there are many special cases that might be consider, where φ′′(c) = 0, where
f(c) = 0, and where more than one stationary point exists in the interval of
integration. (Reference: Ablowitz and Fokas, chapter 6, especially section 6.3.3.
Anyone interested in a elegant short book on asymptotic expansions should get
a copy of A. Erdélyi’s book, Asymptotic Expansions, published by Dover.)

2.3 Asymptotic expansion of the Bessel function Jn(r) for
large r.

The Bessel function Jn(r) can be defined by by the integral

Jn(r) =
i−n

π

∫ π

0

eir cos θ cos nθ dθ =
i−n

2π

∫ 2π

0

eir cos θ cosnθ dθ. (40)

A standard result is that for large positive r

Jn(r) =

√
2
πr

cos(r − 1
2
nπ − 1

4
π) +O(r−1), r → +∞. (41)

Let us see how this result can be obtained by the method of stationary phase.
Since the derivative of cos θ vanishes at θ = 0, π there will be two contributions
from the two stationary points. We thus get

Jn(r) ∼ i−n

2π

[
eir

∫ +∞

−∞
e−irθ

2/2 dθ + cosnπe−ir
∫ +∞

−∞
eirθ

2/2 dθ
]
, (42)

∼ 1√
r

√
2π

2π
e−inπ/2

[
eir−iπ/4 + einπe−ir+iπ/4

]
(43)

thus yielding (41).

3 Lecture 11: The method of steepest descent

We have seen that the equation (29) can be solving by a superposition of dis-
persive waves

u =
∫ b

a

f(λ)ei(λx−λ
3t)dλ ∼ f(c)eitφ(c)

√
πe

iπ
4 sgn(φ′′(c))

√
|φ′′(c)|t

, t→ ∞+O(1/t), t→ ∞,

(44)
where φ(λ) = λxt − λ3, c =

√
x/(3t) and we assume c but not −c is contained

in (a, b). We thus have

u ∼ f(c)
√
πeiπ/4√

2
√

3(x/t)1/2
√
t
e
it 2

3
√

3
(x/t)3/2

=
1
t1/3

F (η), η = x/(3t)1/3. (45)
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If we substitute u = 1
t1/3F (η) into (29), we obtain

F + ηF ′ + F ′′′ = (ηF + F ′′)′ = 0. (46)

Thus we are able to satisfy (29) by any function of the form u = 1
t1/3F (η)

by solving the ordinary differential equation

Fηη + ηF = 0. (47)

Setting z = −η, , F (η) = w(z) in (47) gives us the standard form of Airy’s
differential equation:

wzz − zw = 0. (48)

The point of this is to move to a class of approximations to integrals obtained
by a kind of generalization of the method of stationary phase. Recall that
method needed to use the calculation of the Fresnel integrals as we did earlier
using contour methods, an approach which in essence replaces rapid oscillations
of the kernel by its exponential decay (we compute the integral of cos(tx2) by
converting it to an integral of e−tx

2
.) The method of steepest descent in effect

does all of this in one step, by considering simultaneously the real and imaginary
parts of a complex exponential.

We will now illustrate this method by finding solutions of Airy’s equations
and then approximating them asymptotically for large |z|.

3.1 Representation of solutions of ODEs by contour inte-
grals

We describe now a very useful techniques for finding and studying solutions
of certain linear ordinary differential equations, using Airy’s to introduce the
ideas. We try to solve (48) in the form

w =
∫

C

ezσv(σ)dσ (49)

where σ is a complex variable and C is a certain contour of integration which
is to be identified as part of the construction of the solution. Writing Airy’s
equation as Lw = 0, then we have from (49) that

Lw =
∫

C

v(σ)L(ezσ )dσ =
∫

C

v(σ)(σ2 − z)ezσdσ = 0. (50)

We now note that integration by parts gives
∫ B

A

v(σ)zezσdσ = (v(σ)ezσ )
∣∣B
A
−

∫ B

A

v′(σ)zzσdσ. (51)

Thus ∫

C

v(σ)L(ezσ )dσ = −(v(σ)ezσ )
∣∣B
A

+
∫ B

A

(vσ2 + v′)ezσdσ. (52)
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Therefore we have a solution of (48) under two conditions:
(i) The contour extends from point A to point B such that the integral exists

and (v(σ)ezσ )
∣∣B
A

= 0. (Note that A or B or both could be the point at infinity.)
(ii) vσ2 + v′ = 0 or

v = Ce−σ
3/3. (53)

We take C = 1
2πi , set σ = iz1/2ζ, and define x = z3/2 > 0. The endpoints

A,B will be taken at infinity, as determined below. The Airy function we shall
define is

Ai(x2/3) =
x1/3

2π

∫

C

exh(ζ)dζ, h = i(ζ +
1
3
ζ3). (54)

The contour C will be defined such that as ζ → ∞ eiζ
3 → 0. Thus C will begin

at ∞ in the sector 2π/3 < arg ζ < π and end at ∞ in the sector 0 < arg ζ < π/3,
see figure 1 below.

Note that the sectors I, II, III, each being π/3, are the sectors where eiζ
3 →

0 as infinity is approached. Thus the contours Ck, k = 1, 2, 3 as shown in the
figure will yield three solutions of Airy’s equation. Since exh(ζ) is an entire
function of ζ, ∫

C1+C2+C3

exh(ζ)dζ = 0 (55)

by Cauchy’s theorem, implying that these three solutions are linearly dependent.
A second solution of the equation can be defined, f0r example, as

Bi(x2/3) =
x1/3

2π

∫

C2−C3

exh(ζ)dζ, h = ζ +
1
3
ζ3. (56)

We focus here on Ai.
Recalling that we are taking x > 0, we seek an asymptotic description of

Ai as x → ∞. The idea now is to deform C to pass through a point where
h′(ζ) = 0. At such a point, ζ0 say, we will have

h = h(ζ0) + h′′(ζ0)
1
2
(ζ − ζ0)2 + . . . , (57)
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If ζ = ξ+ iη, the real and imaginary pars of h will be harmonic functions of ξ, η,
and will have not local maxima at finite ζ, so ζ0 will be a saddle point. The idea
is then to deform the contour to go over the col of the saddle along a path which
has a local maximum and is the steepest path down from the maximum. Since
Re(h)= constant and Im(h)= constant will always intersect at right angles, the
steepest path will be a line of constant Im(h).

Now h′(ζ = i(1 + ζ2) = 0 when ζ = ±i. We thus take ζ0 = i.

Imh(ζ) =
1
3
ξ3 − ξη2 + ξ, (58)

so that Im h(i)=0. Since the steepest path down will go through the col ζ0 = i,
the steepest path must satisfy

ξ(ξ2 − 3η2 + 3) = 0. (59)

Now Re h = 1
3η

3 − ξη − η, and so Re h(i)=-2/3. Also the path ξ = 0 from
(59) increases Re h as we move along it away from the col, so the steepest path
down is along the hyperbola ξ2 − 3η2 + 3) = 0. We show the situation in figure
2, where the arrows indicate the direction where Re h is decreasing.

We now take advantage of the steepest path and first consider the integral
from i to i + ∞ along the line η = 1. Call this I1. Note that

h(ζ) − h(i) = −(ζ − i)2 +
i

3
(ζ − i)3. (60)

Let ζ − i =
√
u, u > 0 in I1. Then

I1 =
x1/3

2π
e−

2
3x

∫ ∞

0

e−xue
1
3 ixu

3/2 1
2
√
u
du. (61)

What we have gained here is the exponential decay of the integrand for x > 0.
The integral clearly exists. To obtain an asymptotic series for large positive x

12



we expand the second exponential and integrate term by term, to obtain

I1 ∼ x−1/6

4π
e−

2
3x

∞∑

n=0

inΓ(3
2
n+ 1

2
)

3n n! xn/2
. (62)

Here recall the definition of the gamma function

Γ(z) =
∫ ∞

0

tz−1e−tdt. (63)

The integral from −∞ to i along η = 1, call it I2, is readily seen to be the
complex conjugate of I1. Putting these together and simplifying we obtain,
finally,

Ai(x2/3) ∼ x−1/6

2π
e−

2
3x

∞∑

m=0

Γ(3m + 1/2)
(2m)!

(−9x)−m. (64)

If we now set x2/3 = z we have

Ai(z) ∼ 1
2πz1/4

e−
2
3 z

3/2
∞∑

m=0

Γ(3m+ 1/2)
(2m)!

(−9z3/2)−m. (65)

This result holds for complex z as long as Re z3/2 > 0, e.g. for | arg z| < π/3.

3.2 Some related integrals

We consider
f(x) =

∫ ∞

0

exh(ζ)dζ, h = i(
1
3
ζ3 + ζ). (66)

We first let x > 0 and consider the path to be along the positive ξ axis. Since
we are dealing with the same h as before, we know the steepest path from the
col at i, so we may deform the path to take advantage of that result and write

∫ ∞

0

=
∫ i

0

+
∫ i+∞

i

= I0 + I1. (67)

For I1 we now have our previous result minus some prefactors:

I1 ∼ x−1/2e−
2
3x

∞∑

n=0

inΓ(3
2n+ 1

2 )
3n n! xn/2

. (68)

For I0 we set ζ = iu and obtain

I0 = i

∫ 1

0

e−xue−
1
3xu

3
du ∼ i

∞∑

n=0

1
3n n!x2n+1

∫ x

0

e−tt3ndt. (69)

We now show that
∫ x

0

e−tt3ndt = (3n)! + o(1), x→ ∞. (70)
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Integrating by parts
∫ ∞

x

e−tt3ndt = e−xx3n + 3n
∫ x

0

e−tt3n−1dt. (71)

Continuing in this way, we obtain
∫ ∞

x

e−tt3ndt = e−xP (x), (72)

where P (x) is a polynomial of degree 3n. Thus, since e−xxN = o(1) as x → ∞
for any positive integer N , we see that

∫ x

0

e−tt3ndt =
∫ ∞

0

e−tt3ndt+ o(1) = (3n)! + o(1), x→ ∞. (73)

Noting that I1 is exponentially small relative to I0, we have the asymptotic
expansion of f(x) in the form

f(x) ∼ i

∞∑

n=0

(3n)!
3n n!x2n+1

. (74)

Consider now the integral

f(x) =
∫ 1

0

eixζ
3
dζ, x > 0 (75)

With h(ζ) = iζ3, h has a zero of order 2 at ζ = 0. We will try to get from 0 to 1
by taking steepest paths to infinity from both ζ = 0 and ζ = 1. We thus write

∫ 1

0

=
∫

C1

+
∫

C2

= I1 − I2. (76)

For I1 we look at the steepest path from ζ = 0, where Im iζ3=0. This occurs
along the rays arg ζ = ±π/6,±π/2,±5π/6. By checking Re iζ3 on these paths
we see that the only reducing |eiζ3 | as we move from 0 are π/6, 5π/6, 3π/2. We
choose the ray π/6 and set ζ = eiπ/6u. Thus

I1 = eiπ/6
∫ ∞

0

e−xu
3
du = eiπ/6Γ(1/3)

1
3x1/3

. (77)

For the steepest path our of ζ = 1we look at Im h=1 or ξ3 −3ξη2 = 1. Since
Re h= η3 − 3ηξ2 along this path, |eiζ3 | decreases maximally from ζ = 1 moving
along the line 1 + iu, u > 0. If we set ζ3 = 1 + iu we obtain

I2 =
i

3

∫ ∞

0

e−xu+ix(1 + iu)−2/3du. (78)
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Using the binomial theorem we have

(1 + iu)−2/3du =
∞∑

n=0

Γ(1/3)
Γ(n+ 1)Γ(1/3− n)

(iu)n. (79)

A useful identity for the gamma function is

Γ(z)Γ(1 − z) = −zΓ(−z)Γ(z) =
π

sinπz
. (80)

Using this identity after inserting (79) into (78), we find

I2 ∼ eix
∞∑

n=0

(ix)−n−1Γ(n+ 2/3)
Γ(−1/3)

. (81)

Thus

f(x) ∼ eiπ/6Γ(1/3)
1

3x1/3
− eix

∞∑

n=0

(ix)−n−1 Γ(n+ 2/3)
Γ(−1/3)

, x→ ∞. (82)

3.3 The Stokes phenomenon

If f(z) is analytic at infinity then g(z) = f(1/z) is analytic at the origin and
represented by it’s Taylor series there, which also serves as an asymptotic ex-
pansion as z → 0. If, on the other hand, f(z) is not analytic at infinity then its
asymptotic expansion as z → ∞ can change abruptly as arg z varies. The phe-
nomenon, associated with the name of Stokes, will be illustrated by considering
the expansion of

I(z) =
∫ ∞

0

e−zt

1 + t4
dt (83)

as z → ∞. Assume first that t > 0 and Re z > 0. Then by expanding (1+ t4)−1

we see that

I(z) ∼
∞∑

n=0

(−1)n
Γ(4n+ 1)
z4n+1

=
1
z
− 4!
z5

+ . . . . (84)

This expansion is in fact valid whenever the integrals converge, and this is true
for | arg z| < π/2.

Let us now deform the path of integration to be along the negative Im(t)-
axis, from 0 to −i∞. In so deforming the contour, we must take into account
the simple pole at t = e−iπ/4. We then find that

I(z) =
∫ −i∞

0

e−zt

1 + t4
dt+ 2πi

e−ze
−iπ/4

4e−3πi/4
. (85)

Now the integral on the right converges when iz has negative real part, or when
0 < arg z < π. Since this region overlaps the region | arg z| < π/2, the same
function will be represented by either integral.
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But note that the pole contribution has the property that it is exponentially
small for 0 < arg z < 3π/4, but is exponentially large for 3π/4 < arg z < π.
Thus in this last region the pole contribution dominates the infinite series in
the asymptotic expansion. Thus the nature of the expansion changes abruptly
on the Stokes line arg z = 3π/4. A similar calculation involving deformation of
the contour to the positive Im t-axis shows that the ray arg z = −3π/4 is also a
Stokes line, with an exponentially large residue from the pole at t = eiπ/4. Since
these exponentially large terms are different in the sectors 3π/4 < arg z < π
and −π < arg z < −3π/4 it follows that arg z = π is also a Stokes line.

References for this section: Erdelyi pp. 36-46, Ablowitz and Fokas pp. 298-
300, pp. 488-490 and section 6.4.

4 Lecture 12: The gamma function

Recall that the gamma function is defined by

Γ(z) =
∫ ∞

0

tz−1e−tdt. (86)

Here we take x=Re (z) > 0 to insure convergence of the integral at t = 0, since
|tz−1| = tx−1. Now

Γ(z + 1) =
∫ ∞

0

tze−tdt = −tze−t|∞0 + zΓ(z) = zΓ(z). (87)

If n is a positive integer, then induction on (87) gives,

Γ(n + 1) = n!. (88)

One sometimes writes Γ(1 + z) = z! for complex z, to emphasize the fact that
(86) is a generalization of the factorial function. In fact the term “factorial
function” also applies to Γ(z + 1).

If Re(z) > 0, Γ(z) is an analytic function of z. Indeed

1
h

[Γ(z + h) − Γ(z)] =
1
h

∫ ∞

0

(th − 1)tz−1e−tdt→
∫ ∞

0

tz−1(ln t)e−tdt (89)

as h → 0.
It is easy to define Γ(z) beyond the domain Re (z) > 0. For example, from

(87) we use may the fact that Γ(z + 1) is defined by for Re (z + 1) > 0, or Re
(z) > −1, to find that zΓ(z) is also defined and analytic there. Continuing in
this way Γ(z + 2) = z(z + 1)Γ(z) is analytic in Re (z) > −2, and

z(z + 1)(z + 2) · · · (z + n− 1)Γ(z) = Γ(z + n) (90)

is analytic in Re (z) > −n. In this domain

Γ(z) =
Γ(z + n)

z(z + 1)(z + 2) · · · (z + n− 1)
, (91)
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showing that Γ(z) is analytic at all finite points of the complex plane with
the exception of simple poles at 0,−1,−2, . . . . A few special values of Γ are
Γ(1) = 0! = 1, Γ(1/2) =

√
π and

(1
2

)
! =

1
2
√
π,

(3
2

)
! =

3
2

1
2
√
π,

(
− 3

2

)
! = −2

√
π,

(
− 5

2

)
! =

4
3
√
π. (92)

(See problem (1) of set 10.)
Analytic continuation of Γ(z) can also be accomplished by contour deforma-

tion We introduce the contour integral
∫

C

tz−1e−tdt (93)

where C is taken to surround the origin and begin and end at z = +∞, see
figure 3(a). The only possible finite singularity of the integrand is at t = 0, so
we may deform the contour as shown in figure 3(b), the circle denoting the circle
of radius R. Now the two integrals on either side of the positive Re(t)-axis add
up to

IR = (1 − e2πiz)
∫ ∞

R

tz−1e−tdt. (94)

The integral around the circle, I0 say, satisfies

|I0| ≤ 2πeRRe(z). (95)

Thus if Re(z) > 0, I0 tends to 0 as R → 0. Taking the limit, we obtain
∫

C

tz−1e−tdt = (1 − e2πiz)
∫ ∞

0

tz−1e−tdt, (96)

or
Γ(z) =

1
(1 − e2πiz)

∫

C

tz−1e−tdt. (97)

Now we observe that the RHS of (97) involves a contour integral which is an
analytic function of z for all finite values of z. Thus (97) provides the analytic
continuation of Γ(z) to all finite values of z except possibly for the zeros of
1− e2πiz. We know that the zeros 0,−1,−2, . . . are indeed poles of Γ(z). It can
be shown that the zeroes 1, 2, . . . of this function are in fact points of analyticity
of the RHS of (97) (problem 2(b) of homework 10). Thus we have the desired
analytic continuation to all points except the poles at 0,−1,−2, . . ..
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4.1 The reflection identity

We now establish the useful and beautiful identity

z!(−z)! =
πz

sinπz
. (98)

This can also be written

Γ(z)Γ(1 − z) =
π

sinπz
. (99)

To prove it, we have

u!v! =
∫ ∞

0

e−xxudx

∫ ∞

0

e−yyvdy = lim
M→∞

∫ M

0

∫ M

0

e−(x+y)xuyvdxdy. (100)

We now integrate over the triangle (1) of figure 4 by setting z = x + y and
eliminating y. We are then going to integrate by “strips” along the diagonals
z = constant, with z then varying from 0 to M . Thus we get

∫ M

0

∫ z

0

e−zxu(z − x)vdxdz. (101)

Putting x = tz we then have

∫ M

0

∫ 1

0

zu+v+1e−ztu(1 − t)vdtdz =
∫ 1

0

tu(1 − t)vdt
∫ M

0

zu+v+1e−zdz. (102)

As M → ∞ in tis we get

(u+ v + 1)!
∫ 1

0

tu(1 − t)vdt. (103)

We next show that the integral over the triangle (2) of figure 4 tends to zero at
M → ∞. Indeed , the integrand there satisfies

|e−(x+y)xuyv | ≤ e−MM (Re(u+v)), (104)

so the integral is bounded by 1
2e

−MM (Re(u+v)+2) → 0 as M → ∞.
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Thus, for Re(u) > −1 and Re(v) > −1 we have the important relation
∫ 1

0

tu(1 − t)vdt =
u!v!

(u+ v + 1)!
. (105)

Setting t = s
1+s

in (105) we obtain
∫ ∞

0

su

(1 + s)u+v+2
ds =

u!v!
(u+ v + 1)!

. (106)

We now revert to the use of z we began with, by setting u = z, v = −z, we see
that the integral on the left of (106) exists if |Rez| < 1 and we have

∫ ∞

0

sz

(1 + s)2
ds =

πz

sinπz
, (107)

see problem 3 of homework 10. Thus

z!(−z)! =
πz

sinπz
. (108)

This result now extends to all z other than the positive and negative integers
by analytic continuation. I find the formula (108) easier to remember than the
form (99), and there is the useful check at z = 0.

4.2 Gauss’ definition of z!

Let us, in (105), replace t by w/v and u by z:

v−z−1

∫ v

0

wz(1 − w/v)vdw =
z!v!

(z + v + 1)!
. (109)

The integral exists if Re z > −1. Let us set v = n = positive integer and take
w > 0 to obtain

n−z−1

∫ n

0

wz(1 −w/n)ndw =
z!n!

(z + n+ 1)!
. (110)

Now as n → ∞ we have (1 − w/n)n → e−w and this limit may be taken under
the integral since (1 −w/n)n < e−w there. Thus we have

lim
n→∞

nz+1 z!n!
(z + n+ 1)!

=
∫ ∞

0

wze−wdw = z!, (111)

or, since (n + z + 1)/n→ 1,

(n + z)!
n!nz

→ 1, n→ ∞. (112)

We from (91) we have

Γ(z + 1) = z! =
Γ(z + n+ 1)

(z + 1)(z + 2) · · · (z + n)
=

(z + n)!
n!nz

n!nz

(z + 1)(z + 2) · · · (z + n)
,

(113)
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and so, taking the limit n → ∞ and using (112)

z! = lim
n→∞

n!nz

(z + 1)(z + 2) · · · (z + n)
, Re z > −1. (114)

This representation of z! was used as the definition of the factorial function by
Gauss; it can be extended beyond Re z ≥ −1 as follows. We can rewrite (114)
as

z! = lim
n→∞

nz

(1 + z)(1 + z/2) · · · (1 + z/n)
. (115)

Taking the logarithm of both sides of (115), we have

log z! = lim
n→∞

[
z
(

ln
2
1

+ ln
3
2

+ . . .+ ln
n

n− 1

)
−

n∑

m=1

log(1 + z/m)
]
, (116)

or

log z! =
∞∑

m=1

[
z log

m + 1
m

− log
m+ z

m

]
(117)

This infinite series converges absolutely (see problem 5 of homework 10), and
for z not a negative integer we obtain an absolutely convergent series of analytic
functions, which defines an analytic function for z not a negative integer, and
this the desired result.

Note that (114) implies that Γ(z) has no zeros.
A variant of (114) can be optained using

limn→∞[lnn− 1 −
1
2
−

1
3
− . . .−

1
n

] = −γ, (118)

where γ is Eulers constant ≈ .577215665. Dividing out the factorial from the
numerator of (114) and introducing exponential function suggested by (118) we
obtain

z! = e−γz
∏

n = 1∞
(
1 +

z

n

)−1

ez/n. (119)

4.3 Stirling’s formula

We now derive the leading term of the asymptotic expansion of Γ(z) for large
|z|, using the method of steepest descent. We start with

Γ(z) =
∫

C

tz−1e−tdt =
∫

C

t−1eφ(t)dt, φ(t) = z log t− t. (120)

Here C will be a deformed path from the original path along the positive Re t-
axis. Now φ′(z) = 0, φ′′(z) = −1/z, so the stationary point tends to infinity
with z. So let’s set t = z(1 + s), so the stationaryt point occurs at s = 0:

Γ(z) =
∫

C

(1 + s)−1zze−zez(log(1+s)−sds. (121)
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Expanding,

log(1 + s) − s = −
1
2
s2 +

1
3
s3 − . . . , (122)

showing that the steepest path will be in the direction φ = −1
2

arg(z). Setting
s = eiφu, we then take u to be real. Finally, we set u = v

√
2/|z|, so that

s = v
√

2/z, and let

ψ(w) = log(1 + w) −w + w2/2. (123)

Then we have

Γ(z) =
√

2zz−
1
2 e−z

∫

C

(1 + v
√

2/z)−1e−v
2√

2ezψ(v
√

2/z)dv. (124)

We thus get to leading order

Γ(z) ∼
√

2zz−
1
2 e−z

∫ +∞

−∞
e−v

2
dv =

√
2πzz−

1
2 e−z [1 + E], (125)

as z → ∞, where we note that E = O(1/z). Stirling’s formula (125) can be
shown to hold for | arg z| < π. The error E can be computed as a series by the
above integral, but it is a bit awkward and other methods are better suited to.
With a little work one can show from (124) that E = 1

12z + O(1/z2).
Reference for this section: , Nehari’s Introduction to Complex Analysis, pp.

245-248. See also Ahlfors pp. 198-206.

5 Lecture 13: The Riemann zeta function

This is defined by the series

ζ(z) =
∞∑

n=1

1
nz
. (126)

This function is an important one in number theory. To give an example of its
appearance there (we postpone the proof to later section) we note that

ζ(z) =
∏

p∈P

(1 − p−z)−1, (127)

where P is the set of prime numbers.
The series converges absolutely if Re z > 1 and thus represents an analytic

function in any closed subdomain of this region. Riemann showed that this
function could be extended by analytic continuation outside this domain. To
do this we transform the series into a definite integral on the positive real axis.
For any positive integer n we see that

∫ ∞

0

tz−1e−ntdt =
1
nz

∫ ∞

0

sz−1e−sds =
Γ(z)
nz

. (128)
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Thus

Γ(z)
m∑

n=1

1
nz

=
∫ ∞

0

tz−1
m∑

n=1

e−ntdt =
∫ ∞

0

(e−t − e−(m+1)t

1 − e−t

)
dt. (129)

We now show that

I =
∫ ∞

0

tz−1e−(m+1)t

1 − e−t
dt→ 0 (130)

as m → ∞. Indeed 1/(et − 1) ≤ 1/t and since |tz| = tx we have

|I| ≤
∫ ∞

0

tx−2e−mtdt =
Γ(x− 1)
mx−1

. (131)

Since we are assuming Re z = x > 1, , the RHS tends to zero as m → ∞.
Thus

ζ(z) =
1

Γ(z)

∫ ∞

0

tz−1

et − 1
dt. (132)

The point t = 0 is the only singular point of the integrand and so we may replace
the integral by an integral over the path of figure 3(b), provided we introduce
the factor (1− e2πiz)−1 and restrict R to be < 2π (because of the denominator
et − 1):

ζ(z) =
1

(1 − e2πiz)Γ(z)

∫

C

tz−1

et − 1
dt. (133)

Now observe that

(1 − e2πiz)Γ(z) = −2ieπiz sinπz Γ(z) =
−2πieπiz

Γ(1 − z)
, (134)

where in the last step we have used the reflection identity in the form (99). This
(133) is equivalent to

ζ(z) =
−e−πizΓ(1 − z)

2πi

∫

C

tz−1

et − 1
dt. (135)

Now (135) provides the desired analytic continuation of ζ(z) to the complex
plane except possibly for the singularities of Γ(1 − z), i.e. the positive integers.
But we know that ζ(z) is analytic at z = 2, 3, . . ., and at z = ∞, so the analytic
extension is to all points of the extended complex plane excluding z = 1, which
is Riemann’s result.

We show now that ζ(z) is indeed singular at z = 1 and that it has a simple
pole there with residue 1. Now when z = 1 in the integral in (135) we have
easily (cf. figure 3(b)) ∫

c

1
et − 1

dt = −2πi (136)

since the deformed contours on the axis cancel out and only the contribution is
the pole at t = 0. Since Γ(1) = 1 we see from (133) that the pole comes from
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the zero of 1 − e2πiz, so the derivative of this expression gives the residue as
−2πi/(−2πi) = 1.

To show the significance of (135) we show now that

∞∑

n=1

n2 = 0 (!!!). (137)

Of course we have adopted the misleading notation of using the series where we
mean the analytic extension (135). We see that

ζ(−2) = −Γ(3)
2πi

2πiRest=0(t−3(et − 1)−1) = 0, (138)

as can be seen from the vanishing of the t3 term in the Taylor series of t(et−1)−1

at t = 0. Of course (137) is no more of a shock than writing
∑∞

n=0 2n = −1
when you mean 1

1−z

∣∣
z=2

.

5.1 Relation of ζ(z) to the prime numbers.

We now derive (127). First note the following result: An infinite product

∞∏

1

(1 + an) (139)

converges, i.e.

lim
n→∞

n∏

1

(1 + am) (140)

exists, if and only if the series

∞∑

n=1

Log(1 + an) (141)

converges, where the principle branch of each term is taken. Convergence is
always assume to be to a nonzero complex number.

It is clear by taking logarithms that convergence of the series insures con-
vergence of the product. To prove that convergence of the product insures
convergence of the series on has to think a little about convergence of the ar-
guments of the logarithms. Let the product converge to P 6= 0, the series to S,
and let the corresponding partial sums be Pn,Sn. Then

Log Pn = Sn + kn2πi, (142)

where {kn} is a sequence of integers. But Log (Pn/P) → 0 and so

Sn − Log P + kn2πi → 0 (143)
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But then

Sn+1 − Sn + (kn+1 − kn)2πi = Log (1 + an+1) + (kn+1 − kn)2πi→ 0. (144)

But since |Arg(1 + an+1)| < π, necessarily kn+1 − kn → 0 and so kn must
ultimately be a fixed integer k, and Sn must converge to Log P − 2πik.

An infinite product is said to converge absolutely if the corresponding series
(141) converges absolutely. But since an → 0 in any case, for n sufficiently large
we have

(1 − ε)|an| < | log(1 + an) < (1 + ε)|an|, (145)

for some sufficiently small ε > 0. Accordingly, a necessary and sufficient condi-
tion for the absolute convergence of (139) is the convergence of

∑∞
n=1 |an|.

We may now assert that the infinite product

1
ζ(z)

=
∏

p∈P
(1 − p−z) (146)

converges absolutely and a uniformly for <(z) ≥ x0 > 1 if the same is true of
the series

∑∞
n=1 |p−z| =

∑∞
n=1 p

−x. This series, involving the primes, is a sum
over a subset of the positive integers, so its absolute convergence follows.

Now if x > 1 we see that

ζ(z)(1 − 2−z) =
∞∑

n=1

(1 − 2−z)n−z =
∞∑

n=1

n−z −
∞∑

n=1

(2n)−z =
∞∑

m=0

(2m + 1)−z.

(147)
That is, the sum is now over the set M1 of odd positive integers. Similarly

ζ(z)(1 − 2−z)(1 − 3−z) =
∑

m∈M2

m−z (148)

where M2 is the set of integers divisible by neither 2 or 3. Thus

ζ(z)(1 − 2−z)(1 − 3−z) · · · (1 − p−zN ) =
∑

m∈MN

m−z (149)

where now the sum is over m not divisible by 2, 3, 5, 7, . . . , pN , i.e. the first N
prime numbers greater than 1. If there were only a finite number of primes, for
some N the RHS of (149) would be 1, since that is the first and only term in
that case, and so we would have that ζ(1) = finite number. This contradicts
the fact that z = 1 is a simple pole of ζ(z). Thus there are an infinite number
of primes pn and pn → ∞ with n.

Looking again at the RHS of (149) we see that the second term is p−(N+1)z,
followed by other terms of n−z, n > pN+1. Summing the “tail ” of the series we
have by Cauchy’s test that the absolute convergence implies, if <(z) > 1, that

lim
N→∞

ζ(z)(1 − 2−z)(1 − 3−z) · · · (1 − p−zN ) = 1, (150)

which is equivalent to (127).
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5.2 A functional equation for ζ(z).

Riemann found a beautiful equation relating ζ(z) and ζ(1 − z):

ζ(z) = 2zπz−1 sin(πz/2)Γ(1 − z)ζ(1 − z). (151)

Like the reflection identity of the gamma function, this relation allows values of
ζ in the halfplane x < 0 to be accessed easily.

To establish (151) we consider in (135) first, the path C as in figure 3(b)
with R < 2π, as we used in (135), but also the same expression taken with the
path Cn involving the radius R = Rn, where 2πn < R < 2π(n+1), see figure 5.

Call the corresponding RHSs of (135) I, In. Thus I = ζ(z) and

I − In = −e−πizΓ(1 − z) ×
∑

Res

tz−1

et − 1
, (152)

where the sum is over the residues at t = 2πik, k = ±1, . . . ,±n.
We first show that In → 0 as n→ ∞. We need to show that

lim
n→∞

∫

Cn

tz−1

et − 1
dt = 0. (153)

Indeed over the circular part of Cn we not that, e.g. taking the radius as
Rn = 2πn + π, we see that t stays a finite distance from 2πni and 2π(n + 1)i
and so there is a lower bound on |et−1| on Cn which is independent of n. Thus

∣∣∣
∫

|t|=Rn

tz−1

et − 1
dt

∣∣∣ ≤ KRxn (154)

for some constant K independent of n, and so this contribution tends to zero
with n if x < 0. The integrals along the real(t) axis clearly also tend to zero
with n. We thus have

ζ(z) = −e−πizΓ(1 − z)
∞∑

n=1

[(2πin)z−1 + (−2πin)z−1]. (155)

Now

−e−πiz [(2πin)z−1 + (−2πin)z−1] = e−πi(z−1)[(2πin)z−1 + (−2πin)z−1]
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= [(−2πin)z−1 + (2πin)z−1] = (2πn)z−12 sin(πz/2). (156)

Thus using this in (155) we have

ζ(z) = 2zπz−1 sin(πz/2)Γ(1 − z)ζ(1 − z) (157)

as claimed, provided that x < 0. But since both sides agree in this domain, the
RHS is the same analytic function as the LHS of (157) , the latter being define
for all z 6= 1. At z = 1, both are infinite, so in fact (157) is valid for all finite z.

5.3 The zeros of ζ(z).

We first note that the points z = −2n, n = 1, 2, . . . are zeros of ζ(z). Indeed we
observe that

g(z) =
1

ez − 1
+

1
2

(158)

is an odd function of z, since

g(−z) = − ez

ez − 1
+

1
2

= − 1
ez − 1

− 1
2
. (159)

Thus in (135), with z = −2n, we see that t−2n−1
[

1
et−1 + 1

2

]
is even and so

cannot have a non-zero residue if n = 1, 2, . . .. The zeros are called the trivial
zeros of ζ(z).

From (127) it follows that there can be no zeros of ζ(z) in x > 1. Then
(recalling that the gamma function has no zeros), (157) implies that ζ has no
non-trivial zeros in x < 0. Thus all non-triviaql zeros of ζ must lie in the
strip 0 ≤ x ≤ 1. The famous Riemann conjecture states that all zeros of ζ lie
on the line x = 1/2. It is probably the most famous unproved conjecture in
mathematics.

References for this section: Nehari pp. 248-251, Ahlfors pp. 212-218.

6 Lecture 14: Transform methods

6.1 The Fourier transform

For a given real function f(x) we define the Fourier transform of f , written Ff ,
by

Ff =
∫ +∞

−∞
e−ikxf(x)dk ≡ f̂ (k). (160)

Here x, k are real variables. We have studied how residue theory can be used to
evaluate integrals of this type. For example

F 1
π

1
1 + x2

= −2isgn(k) Resz=−sgn(k)i
e−ikz

1 + z2
= e−|k|. (161)

Fourier transforms are the natural continuous generalization of Fourier series,
with the function f̂ (k) analogous to the Fourier coefficients of the series.
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We now want to study this as a map from functions of x to functions of k.
In particular we would like to define and study the inverse map F−1 with the
property that F−1f̂(k) = f(x). It turns out that

F−1f̂ (k) =
1
2π

∫ +∞

−∞
eikxf̂ (k)dk. (162)

Before we show this let us verify it for our example:

1
2π

∫ +∞

−∞
eikxe−|k|dk =

1
π

∫ ∞

0

cos kx e−kdk =
1
π

1
1 + x2

(163)

by a well known definite integral of the calculus. Introducing a parameter ε > 0,
we have easily the related function fε(x) = 1

επ
1

1+(x/ε)2 . Then we have

Ffε = e−ε|k| ≡ f̂ε(k), F−1f̂ε(k) = fε(x). (164)

We now want to verify (162) for arbitrary functions. Of course we must deal
with function for which the Fourier integrals exist, and usually one deals with
the Hilbert space of complex-valued functions f which are square integrable, i.e.
such that ∫ +∞

−∞
|f(x)2dx < ∞. (165)

We want to make use of the transform pair fε(x), f̂ε(k) to formally verify
(162), but do this in the limit of ε→ 0. In this case fε(x) tends to a distribution,

δ(x) = lim
ε→0

fε(x). (166)

It has the property that

δ(x) =
{

0, if x 6= 0,
∞, if x = 0. (167)

Also, for any c > 0, ∫ c

−c
δ(x)dx = 1. (168)

These and the results to follow by interpreting δ(x) as a limit. We also note
that δ(−x) = δ(x) and that, if f(x) is a smooth function and a < x0 < b, then

∫ b

a

f(x)δ(x − x0)dx =
∫ b

a

f(x)δ(x0 − x)dx = f(x0). (169)

The ε→ 0 limit thus gives us the following formal identities:

Fδ(x) =
∫ +∞

−∞
δ(x)e−ikxdx = 1, F−11 =

1
2π

∫ +∞

−∞
eikxdx = δ(x). (170)
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We now consider the Fourier transform and its inverse, freely interchanging
the order of integration and using (170):

F−1f̂ (k) =
1
2π

∫ +∞

−∞
eikx

∫ +∞

−∞
e−ikx

′
f(x′)dx′dk

=
∫ +∞

−∞

∫ +∞

−∞

1
2π
eik(x−x

′)dkf(x′)dx′

=
∫ +∞

−∞
δ(x− x′)f(x′)dx′ = f(x). (171)

Again, one can justify these arguments by realizing that

δ(x) =
1
2π

lim
ε→0

∫ +∞

−∞
eikx−ε|k|dk ≡ 1

2π

∫ +∞

−∞
eikxdk. (172)

6.2 The Laplace transform

In many applications we are in interested in the future behavior of a system
starting from some initial state at time zero. Any quantitative function of time
describing this system, f(t) say, can be viewed as = 0 for t < 0 and having the
initial value f(0). The object is then to determine the future behavior of the
system f(t), t > 0. In such cases the Fourier transform and its inverse may be
reconfigured in a form due to Laplace. In the Fourier analysis we shall replace
x by t and f(x) by e−ctf(t), where c is a positive real number. The purpose of
this factor will be apparent presently. It is assumed that f(t) = 0, t < 0. Then
the statement f(x) = F−1Ff(x) is converted to

e−ctf(t) =
1
2π

∫ +∞

−∞
eikt

∫ ∞

0

e−ikt
′
e−ct

′
f(t′)dt′dk. (173)

This can be written

f(t) =
1
2π

∫ +∞

−∞
e(c+ik)t

∫ ∞

0

e−(c+ik)t′f(t′)dt′dk. (174)

Let us define s = c+ ikt. We then rewrite (174) as

f(t) =
1

2πi

∫ c+i∞

c−i∞
est

∫ ∞

0

e−st
′
f(t′)dt′ds. (175)

It is natural now to consider function f(t) which are of exponential order in the
sense that ∫ ∞

0

e−ct|f(t)|dt < ∞. (176)

For such functions we define the Laplace transform of f(t) as

f̂(s) =
∫ ∞

0

e−stf(t)dt ≡ Lf. (177)
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Given (176) if follows from (177) that f̂ (s) is an analytic function of s for
Re(s) ≥ c. Hence all singularities of f̂ (s) lie in the region Re(s) < c. We see
then from (175) that the inverse Laplace transform L−1 is defined by

L−1f̂(s) =
1

2πi

∫ c+i∞

c−i∞
estf̂ (s)ds = f(t). (178)

The path taken by s in this integral, called the Bromwich path, is on the line
Re(s) = c, so is on a line to the right of all singularities of f̂ (s). This means
the natural closure of the path, on a large circular arc to the left of this line for
example, will encompass the singularities and the contour integral will usually
be evaluated by calculating residues.

6.3 Convolutions

In the evaluation of Fourier and Laplace transforms in applications one fre-
quently arrives as a function of k or s which is a product of two functions.
In that case it is convenient to have a formula for the inverse transform that
involves the (presumably simpler) inverses of the two constituent functions.

Consider first the Fourier transform. We define the convolution product of
two functions f(x), g(x) by

(f ∗ g)(x) =
∫ +∞

−∞
g(x′)f(x − x′)dx′. (179)

Then

F(f ∗ g)(x) =
∫ +∞

−∞
e−ikx

[∫ +∞

−∞
g(x′))f(x − x′)dx′

]
dx

=
∫ +∞

−∞
eikx

′
g(x′dx′

[∫ +∞

−∞
e−k(x−x

′)f(x − x′)dx
]

= ĝ(k)f̂ (k). (180)

Thus we have our desired formula for inverting a product:

1
2π

∫ +∞

−∞
eikxf̂(k)ĝ(k)dk = F−1[f̂(k)ĝ(k)] =

∫ +∞

−∞
g(x′)f(x − x′)dx′. (181)

Note that with a change of variable the RHS of (181) can also be written

∫ +∞

−∞
g(x− x′)f(x′)dx′. (182)

A special case of (181) (in the form (182)), called the Parseval formula, is
obtained by putting g(x) = f̄ (−x), f̄ being the complex conjugate, and setting
x = 0: ∫ +∞

−∞
f(x)f̄ (x)dx =

1
2π

∫ +∞

−∞
f̂ (k)ĝ(k)dk. (183)
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Here

ĝ(k) =
∫ +∞

−∞
e−ikxf̄ (−x)dx =

∫ +∞

−∞
eikxf̄ (x)dx = f̂(k). (184)

Thus the Parseval formula reduces to
∫ +∞

−∞
|f |2(x)dx =

1
2π

∫ +∞

−∞
|f̂ |2(k)dk. (185)

The analogous convolution result for the Laplace transform uses

(f ∗ g)(t) =
∫ t

0

g(t′)f(t − t′)dt′. (186)

We then have

L(f ∗ g) =
∫ ∞

0

e−st
[∫ t

0

g(t′)f(t − t′)dt′
]
dt (187)

Here the sector t′ ≥ t < ∞ is being covered by first integrating t′ from 0 to t.
But we may convert this by first integrating with respect to t from t′ to ∞.We
then obtain

L(f ∗ g) =
∫ ∞

0

g(t′)
[ ∫ ∞

t′
e−stf(t − t′)dt

]
dt′

=
∫ ∞

0

g(t′)e−st
′
[ ∫ ∞

t′
e−s(t−t

′)f(t − t′)dt
]
dt′

=
∫ ∞

0

g(t′)e−st
′
dt′

[ ∫ ∞

0

e−suf(u)du
]

= f̂ (s)ĝ(s), (188)

or

L−1[f̂(s)ĝ(s)] =
∫ t

0

g(t′)f(t − t′)dt′. (189)

As an example, consider the inverse Laplace transform of s−a, where 0 <
a < 1. We take c > 0 and close the contour by a large circular arc to the left,
integrals along both sides of the branch cut, and a small circle around the origin,
see figure 6. By the usual methods we can show that when t > 0 the circles
may be taken to their limits with zero contribution, so the integral along the
Bromwich path is

L−1s−a =
1

2πi

∫ ∞

0

e−utu−adu[eiπa − e−iπa] =
sinπa
π

ta−1Γ(1 − a). (190)
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Figure 6:

6.4 Applications

6.4.1 The IVP for an inhomogeneous linear ODE with constant co-
efficients.

We first look at the Laplace transform of df/dt: By integration by parts, as-
suming that limt→∞ e−stf(t) = 0

Lf ′ = −f(0) + sf̂ (s). (191)

Similarly assuming thatf ′ and higher derivatives satisfy the same limit condition
as f ,

Lf ′′ = −f ′(0) + sLf ′(t) = −f ′(0) − sf(0) + s2f̂(s), (192)

Lf ′′′ = −f ′′(0) − sf ′(0) − s2f(0) + s3f̂ (s), (193)

and so on.
Now consider the ODE

an
dnf

dtn
+ an−1

d(n−1)f

dt(n−1)
+ . . .+ a1

df

dt
+ a0f = A(t). (194)

Here A(t) is given. Let

f(0) = b0, df/dt(0) = b1, . . . , df
n−1/dtn−1(0) = bn−1. (195)

Under the above limit conditions the Laplace transform of (194), is of the form

(ansn + an−1s
n−1 + . . .+ sa1 + a0)f̂ (s) ≡ Pn(s)f̂ (s) = Qn−1(s) + Â(s), (196)

where Qn−1 is a polynomial of degree n − 1 determined by the initial values
b0, . . . , bn−1. Thus

f(t) =
1

2πi

∫ c+i∞

c−i∞
est

Qn−1(s) + Â(s)
Pn(s)

ds. (197)

Note that, by choosing c so that (i) all zeros of Pn lie to the left of Re(s) = c,
and (ii) Â(s) exists, we insure that f(t) satisfies (176). Evaluation of the integral
by residue theory then constructs the solution to the problem.

31



Example 1. Consider

ftt + ft = 1, f(0) = 1, f(0) = 1, f ′(0) = 2. (198)

The Laplace transform leads to

−2 − s+ s2f̂ − 1 + sf̂ =
1
s
. (199)

Thus

f(t) =
1

2πi

∫ c+i∞

c−i∞
est

1 + 3s+ s2

s2(1 + s)
ds =

1
2πi

∫ c+i∞

c−i∞
est

[1 + 2s
s2

− 1
1 + s

]
ds.

(200)
Choosing c > 0 and calculating residues we obtain

f(t) = t+ 2 − e−t. (201)

Example 2. Consider

d3f

dt3
+ 4

df

dt
= et, f(0) = 0,

df

dt
(0) = 1.

d2f

dt2
(0) = −1. (202)

The Laplace transform gives, assuming c > 1,

1 − s + (s3 + 4s)f̂ (s) = − 1
1 − s

. (203)

Consequently

f(t) =
1

2πi

∫ c+i∞

c−i∞
est

−s2 + 2s− 2
s(1 − s)(4 + s2)

ds. (204)

Calculating residues we obtain

f(t) =
1
5
et − 1

2
+

3
10

cos 2t+
2
5

sin 2t. (205)

6.4.2 The IVP for the one-dimensional heat equation.

The one dimensional heat equation is the following PDE in x and t.

ut − uxx = 0. (206)

We seek to solve the initial value problem for −∞ < x < +∞ with u(x, 0) =
u0(x). It is natural, given the infinite interval, to use the Fourier transform:

F(ut − uxx) = ût + k2û = 0. (207)

Solving and using the initial condition in Fourier space,

û = û0(k)e−k
2t. (208)
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Now

F−1e−k
2t =

1
2π

∫ +∞

−∞
eikx−k

2tdk. (209)

We change to the variable s = k
√
t − ix/(2

√
t), which amounts to a shift to a

new contour parallel to the Re(k) axis:

F−1e−k
2t =

e−x
2/(4t)

2π
√
t

∫ +∞

−∞
e−s

2
ds =

1√
4πt

e−x
2/(4t) ≡ U (x, t). (210)

The function U (x, t) is the fundamental solution of the heat equation, represent-
ing physically the temperature of a bar which initially contained a unit amount
of heat concentrated at x = 0.

It follows from the convolution formula that

F−1û0(k)e−k
2t =

∫ +∞

−∞
u0(y)U (x − y, t)dy, (211)

which is the Poisson representation of the solution to the initial-value problem
for the heat equation on −∞ < x < +∞.

Any initial-value problem suggests use of the Laplace transform, and it is
instructive to see how this works in the present example. We have, given the
initial condition u(x, 0) = u0(x),

L(ut − uxx) = −u0(x) + sû− ûxx = 0. (212)

The Green’s function for the operator s− ∂2

∂x2 is G(x, y) = 1
2
√
s
e−

√
s|x−y| so the

solution of (212) is

û(x, s) =
1

2
√
s

∫ +∞

−∞
u0(y)e−

√
s|x−y|dy. (213)

Now consider

L−1
[ 1
2
√
s
e−

√
s|x|

]
=

1
2πi

∫ c+i∞

c−i∞

[ 1
2
√
s
e−

√
s|x|

]
ds (214)

We take the negative Re(s) axis for the branch cut of
√
s and use the contour

of figure 6. We then get

1
2πi

[
− 1

2i

∫ ∞

0

s−1/2e−i|x|
√
s−stds − 1

2i

∫ ∞

0

s−1/2e−i|x|
√
s−stds

]

which, with s = k2, returns us to the result of use of the Fourier transform:

=
1
2π

∫ +∞

−∞
ei|x|k−tk

2
du. (215)

From (213) we thus have as before

L−1û(x, s) =
∫ +∞

−∞
u0(y)U (x − y, t)dy. (216)
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6.4.3 The IVP for the one-dimensional wave equation.

If the wave speed is normalized to unity, the one-dimensional wave equation is

utt − uxx = 0. (217)

We consider the initial-value problem

u(x, 0) = f(x), ut(x, 0) = g(x). (218)

The Fourier transform gives

F [utt − uxx] = ûtt + k2û = 0. (219)

In Fourier space the solution of the initial-value problem for the second-order
ODE (219) is

û(k, t) = f̂ (k) cos kt+ ĝ(k)
sin kt
k

. (220)

But

F−1 cos kt =
1
4π

∫ +∞

−∞
[+eik(x+t) + eik(x−t)]dk =

1
2
[δ(c+ t) + δ(x− t)], (221)

F−1k−1 sinkt = F−1 1
2ki

[
eik(x+t) − eik(x−t)

]

=
1
2
[sgn (x+ t) − sgn (x− t)]. (222)

The convolution formula thus gives

u =
1
2

∫ +∞

−∞

[
f(y)[δ(x − y + t) + δ(x− y − t)]

+g(y)[sgn (x− y + t) − sgn (x− y − t)]
]
dy. (223)

The term involving f gives 1
2 [f(x− t) + f(x+ t)] by the basic property of δ(x).

For the term involving g, note that sgn (x − y + t) − sgn (x − y − t) vanishes
unless x − t < y < x + t, when it equals 2. Thus we obtain the D’Alembert
solution of the IVP of the wave equation,

u(x, t) =
1
2
[f(x − t) + f(x + t)] +

∫ x+t

x−t
g(y)dy. (224)

Finally, consider the following initial-boundary value problem for the wave
equation (217) on 0 < x < L:

u(x, 0) = 0, ut(x, 0) = 0, u(0, t) = 0, u(L, t) = 1. (225)

Thus problem arises e.g. when a stretched elastic string of length 2L, initially
at rest, suddenly undergoes a displacement of it’s middle point. By symmetry
we can consider only the domain 0 < x < L with the conditions (225).
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The Fourier transform is ill suited for finite intervals, but the Laplace trans-
form can be used. Since the initial conditions are null we have

s2û− uxx = 0. (226)

The solutions of this equation must satisfy

û(0, s) = 0, û(L, s) = L 1 =
1
s
. (227)

Thus
û(x, s) =

sinh sx
s sinh sL

. (228)

Thus

u(x, t) =
1

2πi

∫ c+i∞

c−i∞
est

[ sinh sx
s sinh sL

]
ds. (229)

For the residue calculation we take the contour show in Figure 7.

On the upper horizontal line, we have s = σ + π(N + 1/2)i; −M ≤ σ ≤ 0
and so ∣∣∣est sinh sx

s sinh sL

∣∣∣ ≤ L

πN

cosh σx
cosh σL

≤ L

πN
(230)

since x ≤ L. The length of the line is M , by takingM =
√
N say, we get zero

contribution in the limit N → ∞. Similarly for the lower horizontal line it will
have Im(s) = −(N + 1/2)πi and there will be no contribution in the limit. On
the left vertical line we have

∣∣∣est sinh sx
s sinh sL

∣∣∣ ≤ e−Mt(2N + 1)/M → 0, (231)

as N → ∞ for any t > 0.Thus the inversion contour integral is equal to the sum
of the residues at Im(s) = nπi/L, n = 0,±1,±2, . . . . . We then have

u(x, t) = x/L+
∞∑

n=1

[ 1
πni

einπt/L
sinh(inπx/L)

cosh(inπ)
+

1
πni

e−inπt/L
sinh(inπx/L)

cosh(inπ)

]
,

(232)
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This yields

u(x, t) = x/L+
∞∑

n=1

2(−1)n

nπ
sin

(nπx
L

)
cos

(nπt
L

)
. (233)

Reference for this section: Ablowitz and Fokas, pp. 267-300.
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