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From observations of swimming of the shell-less pteropod mollusc Clione antarctica we
compare swimming velocities achieved by the organism using ciliated surfaces alone with
velocities achieved by the same organism using a pair of flapping wings. Flapping domi-
nates locomotion above a swimming Reynolds number Re in the range 5-20. We test the
hypothesis that Re ≈ 5-20 marks the onset of “flapping flight” in these organisms.

We consider the proposition that forward, reciprocal flapping flight is impossible for
organisms whose motion is fully determined by a body length L and a frequency ω below
some finite critical value of the Reynolds number Reω = ωL2/ν. For a self-similar family
of body shapes, the critical Reynolds number should depend only upon the geometry of
the body and the cyclic movement used to locomote. We give evidence of such a critical
Reynolds number in our data, and study the bifurcation in several simplified theoretical
models.

We argue further that this bifurcation marks the departure of natural locomotion
from the low Reynolds number or Stokesian realm and its entry into the high Reynolds
number or Eulerian realm. This occurs because the equilibrium swimming or flying speed
Uf obtained at the instability is determined by the mechanics of a viscous fluid at a value
of Ref = UfL/ν which is not small.

1. Introduction
Because of the difficulty of treating complex time-dependent geometries, theories of

natural locomotion in fluids generally utilize either low Reynolds number approxima-
tions, applicable to micro-organisms, or the assumptions of inviscid fluid dynamics sup-
plemented by boundary-layer theory, applicable to insects, birds, and fish. These two
regimes are also distinct in terms of the observed mechanisms of locomotion (Lighthill
(1975),Childress (1981a), Dudley (2000)). Reduced to its simplest terms, locomotion in
the Stokesian or low Reynolds number realm relies on the diffusion of momentum, while
that of the Eulerian or high Reynolds number realm emphasizes the advection of mo-
mentum in highly structured vortical fields. In the former, one thinks of nonreciprocal,
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cyclic boundary movements which can steadily locomote the organism, whereas in the
latter one invokes mechanisms for producing thrust and lift through vortex shedding and
interactions of the organism and its appendages with the shed vorticity.

There are, however, small locomoting organisms such as many insects and small gas-
tropods, for which characteristic Reynolds numbers lie in the range 1-100. These values
cannot be considered as lying completely in either the Stokesian or the Eulerian realm.
The mechanisms of locomotion appropriate to this intermediate Reynolds number range
thus do not fall fully within the scope of either body of theory, although presumably
the fluid mechanics is adequately described by solutions of the unapproximated Navier-
Stokes equations. What can be established with certainty (see the discussion of section
3) is that reciprocal motions associated with the Eulerian realm, the simple up-and-down
movement of a flapping wing in forward flight, for example, fails to locomote in the Stoke-
sian realm. (We discuss below the meaning of reciprocal motion.) Thus, the intermediate
Reynolds number range is not only one where ciliary and flagellar mechanisms give way
to flapping flight, but also one in which reciprocal flapping becomes a useful alternative.

The present discussion has been motivated by the opportunity we had in November
and December of 2000, while carrying out field work at McMurdo Station, Antarctica, to
observe the swimming behavior of the pteropod Clione antarctica. These small gastropod
molluscs, which can be found in the waters beneath the ice of McMurdo Sound, are
equipped not only with bands of cilia but also with a pair of wings (Figure 1). As a
result, they have two distinct modes of swimming. In ciliary mode the wings are retracted
into the body and the swimming is by metachronal waves of movement around three
bands of cilia encircling the body. The ciliary mechanism is effective for locomotion
at arbitrarily small Reynolds numbers. In flapping mode, the wings are extended and
flapped, the sequence of wing positions being indicated qualitatively in Figure 1. Although
the organism is swimming, this mode, when effective, can be appropriately described
as “forward flapping flight”. We remark that these specimens were not fully developed
adults, and it should be understood that all our results pertain to an early developmental
stage of Clione antarctica.

FIGURE 1 GOES HERE

While in flapping mode, movements of cilia could often still be seen, to a degree which
varied considerably across the organisms studied, but our working hypothesis is that some
slight ciliary activity was always present. Remarkably, in experiments described in the
next section, we found that it was possible (at least for over two dozen of the organisms
we studied) to induce three distinct behaviors: the two swimming modes just described,
and a drift mode in which neither of the organelles were used and the organism drifted
under its natural buoyancy. (The drift mode was important as a reference since these
organisms can modify somewhat their natural buoyancy.) It thus became possible to test
the hypothesis that there should be some transitional values of parameters determining
when a flapping mode becomes more effective to the organism than the ciliary mode,
as measured by the absolute speed of swimming. As we shall indicate below, the data
are consistent with a hypothesis that the swimming Reynolds number in flapping mode
exceeds that of the ciliary mode at a values of Re of approximately 5−20 based on body
length and swimming speed.

In the present paper we shall describe these measurements of “bi-modal” swimming,
and then, using simplified analytical models, one based upon Oseen’s approximate equa-
tions of motion for a viscous fluid, another based upon a periodic array of flapping wings,
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test the hypothesis that flapping structures should cease to be effective in the production
of thrust below a Reynolds number consistent with our observations.

Because of this failure in the Stokesian realm of reciprocal flapping, it is tempting to
assert that, for a given organism executing fixed reciprocal motions, there must exist
a fluid viscosity above which forward flapping flight becomes impossible. The relative
effectiveness of ciliary and flapping modes is a complex issue, involving aspects of behavior
over which one has no control experimentally. There are however several questions which
the above assertion raises: (i) How can this critical viscosity be translated into transitional
values for the dimensionless parameters of the system, from ciliary to flapping modes? (ii)
How can this proposition be tested by our observations of pteropod locomotion, when and
if ciliary propulsion is also present in the flapping mode? (iii) Can models of reciprocal
flapping be found which exhibit the bifurcation from rest to locomotion as viscosity is
decreased, and which are consistent with the observations?

Our primary goal in this paper will be to argue that the transition to flapping flight
actually occurs as a mathematical bifurcation with respect to a flapping Reynolds num-
ber. That is, locomotion using reciprocal flapping can be regarded as resulting from the
instability of the system of the flapping body and the fluid medium, initiated by a “push”
of the immobile flapping body, and “saturated” in the state of forward flight. Our discus-
sion will refer to three distinct Reynolds numbers: Rec,f = Uc,fL/ν being the swimming
Reynolds numbers in ciliary or flapping modes, L being body length; and Reω = ωL2/ν,
a Reynolds number pertinent only to the flapping mode. Reω will be our bifurcation pa-
rameter. The derived frequency parameter σ = Uf

ωL = Ref/Reω will also be useful. The
parameter Reω is distinguished by being characteristic of a flapping body quite apart
from whether or not locomotion occurs, whereas Rec,f are derived parameters.

The paper is organized as follows: in the next section we summarize our Clione data and
examine it for evidence of transition and criticality. In section 3 we discuss the general
proposition of bifurcation to flapping flight in terms of the dimensionless parameters
and compare transitional swimming with the concept of a critical Reynolds number. In
sections 4, 5, and 6 we consider several two-dimensional models of bifurcation to flapping
flight. Some general aspects of the bifurcation, and how it might be studied as a three-
dimensional Navier-Stokes calculation, are considered in section 7. Finally, in section 8
we summarize our results and discuss their relation to other problems and questions.

It is important to emphasize that, throughout this paper, we use the term “reciprocal”
in the context of low Re fluid mechanics, e.g. Lighthill (1975), Batchelor (1967), Purcell
(1977), Childress (1981a). To define reciprocal motion, suppose that the flapping mode
consists of a periodic cycle through an ordered sequence of configurations, a configuration
being the set of points which instantaneously defines the surface of the body. In reciprocal
motion, this ordered sequence is indistinguishable from the sequence obtained under time
reversal of the flapping cycle. Thus a scallop, which opens slowly and closes quickly,
while in each case moving through the same configurations, is a reciprocal swimmer. A
reciprocal motion is identical under a simultaneous one-one mapping and reversal in the
direction of the time variable. (The flexibility in timing of a movement will be useful to
us in devising a tractable analytical model.)

Note that we refer here to the configurations determined in free locomotion of the
body. In natural swimming and flying, the configuration of a flapping body will in gen-
eral depend upon the flow field which surrounds it, as the body tissue reacts to the
forces imposed by the fluid. In our discussion, when referring to a untethered “reciprocal
flapper”, we shall mean an organism executing a fixed reciprocal motion while in free
locomotion.
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2. Observations of swimming by Clione antarctica

Pteropods were collected using plankton nets, primarily through holes in the sea ice
near McMurdo Station, Ross Island, Antarctica. Sampling depths ranged from 10 to 60
m. Specimens were kept in seawater in a holding tank, where they would remain active
for up to four days. Our measurements of swimming velocity were performed in an open
cylindrical glass tank of radius 6 cm and height 9 cm. This tank was immersed in a
temperature-controlled water bath. The interior of the experimental tank was fitted with
a conical paper structure to facilitate placement of the pteropod at the bottom of the
tank. Pteropods would then ascend to the water’s surface. A mirror oriented at 45◦ to
the horizontal was used to record lateral views with a digital video camera, which also
recorded ascent from a top perspective. The (small) velocity component normal to the
plane of view could not be measured and was set to zero in our data analysis. Video
images were analyzed to obtain head and tail positions at two distinct times during a
phase of swimming in flapping or ciliary mode, or of buoyant drift, as well as the frequency
of wing beating in flapping mode.

Runs in all three locomotion modes were recorded at water temperatures of approx-
imately −2◦C, 0◦C, and +2◦C, to examine the effect of temperature based viscosity
change. The above runs were then repeated in seawater for which viscosity had been
modified by the addition of dextran, a high molecular weight carbohydrate (average
molecular weight 24500). Using falling ball viscometry, the fluid viscosity could be es-
timated as given by (1.886 − .0595T )(1 + 1.3c), where T is temperature in ◦C and c is
the dextran concentration as a percentage of weight. Most runs were at the concentra-
tions c = 0 and .1. Thus viscosity varied by about 13% through separate variations of
temperature and dextran concentration. While relatively small, this variation represents
what occurs naturally for these organisms owing to small temperature variation in the
polar environment. The larger variation of the observed swimming Re came from the
experimental range of body sizes and swimming speeds.

We now describe the reduction of our data to obtain a Re based upon body length
and speed of swimming. The latter was taken as the speed of the center of the line
segment joining the point designated as the head, to that designated as the tail. Let y
be the vertical coordinate, and x the horizontal coordinate in the plane of observation.
Upward drift velocities were dominated by the y-component and this was subtracted
from the y-component of velocity in cilia or flapping mode, to obtain a “buoyancy-
corrected” swimming speed. The rationale for depends upon the locomotion mode. In
flapping mode, we may regard the wings as generating thrust and thus adopt an Eulerian
view. In quasi-steady linearized airfoil theory, thrust is proportional to the square of the
flapping frequency, but is independent of the speed of locomotion. If the approach speed
is augmented by buoyancy, this gives a hydrodynamically unwanted contribution which
must be subtracted out. In ciliary mode, we adopt the Stokesian view of envelope theory
(see Blake (1971)), which equates the effect of the ciliated band by an effective ”slip”
velocity at its outer extremity, and this velocity locally replaces the no-slip condition at
the body. The steady ciliary swimming velocity is that velocity which makes the force
on the body equal to zero when the flow is determined using the modified boundary
condition. The effect of a buoyancy force on this flow is to increment the swimming
speed in order to maintain force equilibrium, and this increment must be subtracted to
obtain the ciliary swimming speed of a neutrally buoyant body. Of course, the actual Re
range is here intermediate and we shall see that fully unsteady conditions prevail, so that
neither argument is exactly applicable. Since the buoyancy correction is approximate, we
shall exhibit uncorrected data as well.
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For each locomotion mode, three sets of kinematic measurements per individual were
made at each combination of temperature and viscosity. Final results for the three runs
under given conditions of locomotion mode, T , and c were averaged, yielding a set of pairs
(Ref ,Rec) of the swimming Reynolds numbers in flapping and ciliary mode for different
individuals, temperatures, and dextran concentrations. For the buoyancy-corrected data
we plot these pairs and the associated linear regression, in Figure 2. The corresponding
data uncorrected for buoyancy is shown in Figure 3.

FIGURES 2 and 3 GO HERE

The 45◦ line in Figures 2 and 3 would be the locus of points if flapping and ciliary
modes were equally effective at all Reynolds numbers. The data, however, clearly indicate
that swimming is faster in flapping mode for sufficiently high Re. At lower Re, we offer
two distinct possibilities: (a) If flapping mode is additive, in the sense that ciliary activity
is undiminished as the wings flap, the data should be close to the 45◦ line below some
value of Re. (b) If flapping mode implies no ciliary activity, the data should tend to (0,0)
along a curve well above the 45◦ line.

The considerable scatter of the data reflects the uncertainty of buoyancy corrections,
out-of-plane velocity components, and possible contributions from ciliary activity in flap-
ping mode. But the most important source of error is probably the behavioral variability
of the pteropods themselves. If all the pteropods, as well as their swimming movements,
were geometrically similar, and if indeed the only dimensionless parameters for the flap-
ping mode were Ref and σ = Ref/Reω, then we should expect that equilibrium swim-
ming speed would be determined by a curve in the (Ref , σ−1) plane. In Figure 4 we
plot the Clione data in this way, both parameters being corrected for buoyancy. It is
interesting that the data seem to lie above a hyperbola: Reω = constant > 0. This rep-
resentation of the data, which brings in Reω explicitly for the first time, gave the first
indication of the existence of a minimum or critical value of Reω, denoted now by Reωc,
for locomotion by flapping. Indeed, Reωc determines the hyperbola which approximates
the curve of equilibrium swimming speed in the limit of small Re. The hyperbolae shown
in Figure 4 in fact correspond to the observed and model values of Reωc.

FIGURE 4 GOES HERE

Perhaps the most important question concerning these observations is to what degree
the flapping mode of Clione is in fact reciprocal. We often saw slight lateral undulations
of body in flapping mode, and the response of flexible bodies to oscillating fluid forces
is usually not reciprocal. We should note also that the wing motion depicted in Figure 1
involves considerable “body slapping”, particularly at the bottom of the downstroke. It
is important to point out in this connection that, while motion effective in the Stokesian
realm must be non-reciprocal, many non-reciprocal motions also are not effective there.
A flexible wing executing movements with complete fore-and-aft symmetry is an exam-
ple of this. We might well have expanded the class of reciprocal flappers to include all
unspecified ineffective movements, without altering the conclusions drawn in sections 3
and 7.

In spite of these and other sources of experimental error and deviation from the ideal
experiment underlying the above arguments, we take these data as evidence of a critical
value of Reω for Clione antarctica.

To make this interpretation explicit, we show in Figure 5 the observed Ref , using a
swimming velocity corrected for buoyancy, versus Reω. In order to focus on the lower
Re, we have discarded all data points lying outside the rectangle of Figure 5. The data
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strongly suggest a Reωc of close to 12, the value used for the lower hyperbola in Figure
4.

FIGURE 5 GOES HERE

The improved correlation in Figure 5, as opposed to Figures 2 and 3, can be traced to
the variability of the swimming velocities in ciliary mode. We show in Figure 6 the raw
data for the buoyancy-corrected swimming speed in ciliary mode versus body length in
ciliary mode. The lack of any obvious correlation suggests variability of the individual
level of ciliary activity. Models of locomotion using ciliated surfaces (assumed to occupy
a fixed fraction of body surface) show that swimming speed is proportional to ΩKa2

where Ω, K is a frequency and wavenumber associated with the metachronal waves, and
a is a wave amplitude (Brennen (1975)). It is not clear how these parameters scale with
body size. Figures 2-5 do suggest that the variability of the data resides in the ciliary
mode, and that the flapping mode becomes the more effective mode as the swimming
Reynolds number increases through the observed range.

FIGURE 6 GOES HERE

3. Transition and criticality in flapping flight
The starting point for our discussion of bifurcation to flapping flight will be the basic

result that reciprocal motions cannot locomote in creeping flow, that is, in the Stokesian
realm. Having the image of a scallop opening and closing in as a sequence of configurations
invariant under time reversal, we follow Purcell (1977) and refer to our version of this
result as the

Scallop theorem: If a flapper locomotes at arbitrarily small values of Ref and Reω, its
motion cannot be reciprocal.

We shall not undertake a rigorous proof of this theorem based upon the mechanics of
fluid and free-swimming body. An informal demonstration of the result rests upon the fact
that time is a parameter in the Stokesian realm, a given body displacement producing
an instantaneous corresponding displacement of all points of the fluid. As the body
cycles through configuration space, the center of volume cycles through displacements.
The net displacement obtained over one cycle changes sign under time reversal. Thus, if
the motion is reciprocal, this net displacement must be identically zero. A discussion of
the geometry of body rotation and translation in terms of a gauge potential defined on
configuration space has been given by Shapere & Wilczek (1989).

The existence of a critical value of Reω follows as a corollary to the scallop theorem.

Corollary: By changing the frequency ω of a given reciprocal flapper, let the swimming
Reynolds number Ref be observed as a function of Reω. Then there is a positive number
Reωc such that Ref (Reω) = 0 if Reω < Reωc.

We give an equally informal proof of the corollary, by first imagining an experiment
involving tethered flappers. Consider a collection of self-similar, reciprocal flappers, each
characterized by a length L and a frequency ω, and tethered in a uniform stream of ve-
locity U . By “tether” we mean that the body neither translates nor rotates, and flapping
continues unabated as it is held in place.

Assume that there exist values of Re and Reω for which the time averaged force
required to hold the organism in place points downstream, that is, net thrust is generated.
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If the frequency of flapping is now decreased, so that Reω is decreased while Re is held
fixed, the mean force required to hold the organism must eventually be directed into
the oncoming stream, that is to say a drag is experienced, since the motion becomes
quasi-steady and the drag is essentially that of a static body. Assuming a continuous
dependence of force on Reω, there must exist a value of Reω where the force vanishes for
this Re, thus establishing conditions for equilibrium. Repeating this experiment for all
Re > 0, we construct a set of pairs (Reω,Ref ) for zero force.

For untethered flappers we may perform a similar experiment. We may assume that
orientation is such direction of motion is fixed and Ref � 0. For suitable initial conditions,
we assume that each flapper achieves a unique equilibrium speed. We thus envisage an
infinite set S of pairs (Reω,Ref ) for equilibrium locomotion, defined for Reω > 0. Some
of these may now involve a zero value of Ref .

To prove the corollary we consider

r = inf
S
{Reω|Ref > 0}. (3.1)

If r = 0, there must be an infinite sequence of pairs (Reωk,Refk), k = 1, 2, . . ., with
Reωk → 0 as k → ∞, where locomotion is observed. But then we must also have Refk → 0
since otherwise we would have observed a finite speed of locomotion for arbitrarily small
values of Reω, which is unphysical.

Thus, if r were zero, we have established that swimming occurs in the Stokesian realm
Reω,Ref � 1. By the scallop theorem, the motion cannot be reciprocal, which is a con-
tradiction. Thus r ≡ Reωc > 0 and necessarily Ref = 0 if Reω < Reωc. This establishes
the corollary.

The precise form of the Reω,Ref variation is largely unexplored in the range of
Reynolds numbers of interest to us here. Referring now to Clione antarctica, the body
moves in ciliary mode through the combination of movements of individual cilia, and
since these are not individually reciprocal (Lighthill (1975), Childress (1981a)), the same
can be said for the body motion as a whole. The organism then swims at a speed which
depends upon the form of the cilia movements, their distribution over the body, and
upon the structure of the metachronal waves of cilia activity. The essential point is that
swimming occurs in fluids of arbitrarily large viscosity, assuming only that the body
movements can be maintained.

It is somewhat simpler conceptually to imagine that the cilia execute identical move-
ments with a fixed frequency ωcil, which has no relation to the frequency ω of the wings,
and is typically larger by a factor of 5-10 than the flapping frequency of 1-2 Hz that we
observed for Clione. The swimming is then such that the advance through the fluid over
each cycle of motion is the same. Thus, there is a constant K such that Rec = KReωcil

provided Reωcil
� 1.

For the case of the flapping mode, we can compare the situation where the wing
movement is not reciprocal to the ciliary mode, for then the advance at small Reynolds
number will again obey a scaling Ref = KReω for some K. Thus the key point is that
such a relation either obtains, in which case the motion is not reciprocal, or else it does
not and a positive critical Reynolds number exists.

Note that we have not excluded the possibility that at some values of Reω exceeding the
critical value the rest state might again be globally asymptotically stable. We have also
not excluded the possibility that the instability may be subcritical, and a finite “push”
might lead to locomotion at values of Reω below the (linear) critical value Reωc. However
there will be a smallest value of Reω(Ref ), Re∗

ωc say, such that if Reω < Re∗
ωc the rest
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state will be globally asymptotically stable with respect to the starting configuration in
the phase space of position and velocity.

The idea of a transition from one mechanism of locomotion to another can be examined
in an organism such as Clione, having both cilia and wings and the ability to use them
independently. We suppose, for the sake of argument, that the two mechanisms are never
used simultaneously. Then in ciliary mode, the scaling Rec = KReωcil

obtains so long as a
Reynolds number associated with the cilia is small. This can be accompanied by values of
Rec of order unity, as is the case observed for Clione. Thus, as body size increases and the
bifurcation is reached, flapping flight can occur simultaneously with ciliary locomotion
and we can refer to transition Reynolds numbers where both modes are accessible, as
appears to be the case with Clione.

4. Oseenlet models
Since our data indicates that the flapping mode is more effective for the swimming of

Clione above a Re in the range 5-20, it is of interest to examine theoretically the free
locomotion of bodies using flapping movements and operating in this range of Reω.

In the present section we develop a linear theory of forward flapping flight based upon
the Oseen approximation. Our object is to illustrate the possibility of locomotion by a
flapping force field, and to study the dependence of the process upon the parameters Reω

and Ref .
We shall replace the appropriate Navier-Stokes equations by the linear Oseen equa-

tions, modified by a damping term,

ut + σux + k−1u + ∇p − ε∇2u = F, ∇ · u = 0. (4.1)

Here we have taken the linearization to be about a dimensionless velocity σ = Ref/Reω,
and ε = Re−1

ω where L is an as yet unspecified reference length. We have included in (4.1)
an arbitrary force field force F(x, t). We shall restrict our calculations to two dimensions,
and allow F to be various distributions of time-dependent point forces. The term k−1u
is a non-standard modification equivalent to placing the flow in a porous medium with
permeability k. This term is introduced to improve convergence of time integrals which
appear below.

A linearization of this kind is of some interest for the study of forward flight, where a
well-defined free stream makes some sense. Nevertheless, it should be born in mind that
it represents a rather drastic simplification of the advection of vorticity, advection by the
true velocity having now been replaced by advection with the free stream. This can lead
to errors in the position of vorticity shed from the body during active flapping which
are reflected in the forces experienced by the body. Also, at higher values of Re, the
boundary layers are not correctly described, although for planar surfaces aligned with
the free stream the penalty is not too severe.

It is convenient to utilize the following representation of the Oseen response to a point
force at the origin at time 0, satisfying

ut + σux + k−1u + ∇p − ε∇2u = fδ(x)δ(t), ∇ · u = 0. (4.2)

where f is a constant vector. With

ui = [δij∇2χ − ∂2χ

∂xi∂xj
]fj , p = −εfi

∂χ

∂xi
, (4.3)
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we obtain from (4.2) that χ = e−t/kK(x − σti, t), where K(x, t) satisfies

∂∇2K

∂t
− ε∇4K = δ(x)δ(t). (4.4)

The general method we shall employ is superposition of fundamental solutions gener-
ated by a moving point force. If the right-hand-side of (4.4) is replaced by, for example
f(t)jδ(x − x0(t)) and we assume that χ(x, 0) = 0 then (4.3) applies with

χ(x, t) =
∫ t

0

f(τ)e−(t−τ)/kK(x − x0(τ) − σ(t − τ)i, t − τ)dτ. (4.5)

4.1. Single oscillating oseenlet
In two dimensions, we have from (4.4) and the requirement that K(0, 0, t) = 0 that

K(x, y, t) =
1
2π

∫ r

0

1 − e−s2/(4εt)

s
ds, r =

√
x2 + y2. (4.6)

A related classical two-dimensional problem of interest in connection with (4.5) is the
calculation of the drag of a circular cylinder in steady flow at low Re, see Lamb (1945),
p. 609, as the limit of the time-dependent flow created by impulsive motion. We outline
this calculation in appendix A for the undamped Oseen theory.

In the present context we are interested in flapping motions and hence in Oseenlets
which are oscillating along lines perpendicular to the free stream. Suppose that a point
force of strength f(t)j is positioned at x = 0, y = sin 2πt. (The reference length L is
here taken as the flapping amplitude.) We now ask, taking this point force as a simple
“flapping wing”, the following question: what horizontal velocity U(t) is induced at the
instantaneous position of the force, and what is the limit for large t of its average over
one cycle starting from time t as a function of Reω and Ref? We denote the latter limit
by 〈U〉.

The thrust that occurs in flapping flight would be obtained as a mean upstream com-
ponent of U(t), the thrust resulting from the resistance presented by the moving body,
here represented by a point force. We are interested not so much in the magnitude of an
upstream component, but rather in how its magnitude changes as a function of Reω and
Ref . The critical curve in Reω,Ref space is now defined by zero average body force, or
thrust=drag and so 〈U〉 = −1.

We shall assume here that f(t) = Cf ε2π cos 2πt, that is, the force is proportional
to velocity with a force coefficient Cf ε. A force coefficient ≈ 10/Re is reasonable for
steady flow past a circular cylinder at these intermediate Reynolds numbers. Here we
shall choose Cf to be large enough to establish a convenient critical value of Reω. In
effect we are considering a ficticious body of sufficiently high drag to allow the study of
locomotion in this linear model.

We then have the explicit expression

〈U(t)〉 = −2Cf

Reω
〈
∫ t

0

cos 2πτ
XY

R4
e(τ−t)/k[1 − (1 + N)e−N ]dτ〉, (4.7)

where X = σ(t − τ), Y = sin 2πt − sin 2πτ, R2 = X2 + Y 2, N = ReωR2/[4(t − τ)]. The
time integral is convergent at τ = t, and as ε → 0 is dominated by the contribution there
and has a finite limit. Note that the damping term e(τ−t)/k assists convergence at for
large t by decreasing the influence of distant wake vorticity.

We show in Figure 7 the result of calculations with values Cf = 41, k = 2.5, which
makes Reωc = 5. The critical curve is shown. We thus may conclude that an oscillating
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vertical point force provides a simple qualitative model of flapping flight illustrating
bifurcation from the state of rest. The shape of this surface is a result of advection (with
the free-stream velocity) of the vortical component of the Oseen solutions. At higher
Reynolds numbers this component lies at any time in the vicinity of a sinusoidal curve
extending downstream from the position of the oscillating point. The summed effect
of these vortices at the point determines U(t). As Re decreases, this vortical structure
becomes more diffuse and U diminishes.

FIGURE 7 GOES HERE

4.2. Approximate 2D wing model
We consider a calculation which develops further the representation of oscillating point
forces in the Oseen model. Our goal is to approximately calculate the force rather than to
simply impose it. We make use of N identical point forces, uniformly distributed in the
interval I : 0 � x � L, all at vertical position y = sinωwt. (Again the reference length it
taken as the flapping amplitude.) We assume identical forces of the form F = 2πf0 cos 2πtj
with f0 a free parameter. We choose f0 by the condition that the coefficient of the cos 2πt
harmonic, of the instantaneous spatial average over I of the vertical velocity component,
be equal to the maximum vertical velocity 2π of the point forces. This is an approximate
attempt to partially satisfy boundary conditions on a solid planar surface.

We define U as the average over I of the the contributions to the induced horizontal
velocity from all N points, averaged as before over a cycle and evaluated for large t. Since
this operation involves an x-integral of χxy we have

U = f0〈
∫ t

0

1
N

N∑
k=1

2π cos 2πτ [χy(L(k − .5)/N − L − σ(t − τ), sin 2πt − sin 2πτ, t − τ)

−χy(L(k − .5)/N − σ(t − τ), sin 2πt − sin 2πτ, t − τ)]dτ〉. (4.8)

The condition on f0 is then

π = −f0

L
〈cos 2πt

∫ t

0

2π cos 2πτ [2F (0, t, τ) − F (−L, t, τ) − F (L, t, τ)]dτ〉, (4.9)

where

F (x, t, τ) = χ(x − t + τ, sin 2πt − sin 2πτ, t − τ). (4.10)

We have calculated three pairs (Reω, σ) where U = −1, for L = 1, ω = 2π, k = 10, and
have included these points as the open circles in Figure 4. Note that the general trend of
the observational data is obeyed by this model. The calculations indicate Reωc = 33.

5. The flapping venetian blind
We consider now a two-dimensional viscous flow model which allows an approximate

calculation of the critical Reynolds number Reωc in a particular if somewhat artificial
case. The “flapper” is an infinite vertical periodic array of oscillating pairs of identical
horizontal flat plates, which we shall call slats, all of chord unity, as shown in Figure 8.

FIGURE 8 GOES HERE

Each pair of slats oscillates in the vertical and in opposition, thus establishing reciprocal
motion with a spatial period δ, equal to twice the average vertical spacing. The array
might therefore be described best as an “flapping venetian blind”. The model arose after
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first considering a single pair of plates, or a “flapping biplane”, the motion of the two
wings against each other giving a crude model of the “body slapping” seen in Clione.
The advantage of periodic extension will be apparent below.

We suppose the array of wing pairs is the set

−1/2 � x � 1/2, y = 3k〈Y (t)〉 ± Y (t), k = 0,±1,±2, . . . ,

|Y − 〈Y 〉| < 〈Y 〉, (5.1)

where 〈·〉 denotes the time average. Note that δ = 2〈Y 〉.
We may assume that Y (t) is periodic with period 1, and place a condition on its

symmetry:

Y (t + 1) = Y (t), Y (t + 1/2) = δ − Y (t). (5.2)

Examples are Y = 〈Y 〉(1 + a cos 2πt), 0 < a < 1, or, in section 5.1,

Y =
{

δ, if 0 < t < 1/2,
0, if 1/2 < t < 1. , (5.3)

which we refer to as a square-wave cycle. With this symmetry the lines y = 〈Y 〉 mod 2〈Y 〉 =
δ/2 mod δ are invariant streamlines of the flow, allowing us to effectively isolate a sin-
gle slat within two invariant streamlines. We shall refer to the strips 0 < y < Y and
Y < y < δ as channels associated with the slat having mean position δ/2.

We are interested in calculating the fluid motion which is generated when this system
of planes is placed in a fixed uniform stream of viscous fluid. We show, under conditions
to be described, that there is a unique value of Reω such that, at this value, the force per
unit area exerted by the fluid upon the array, in the cross–flow plane, vanishes. Further,
we shall find that, within the approximations we make, the force is zero at any free stream
velocity consistent with our assumptions, provided only that sufficient power is provided
to maintain the oscillation of the blind.

In our model, δ is the aspect ratio of the rectangle formed by a pair of adjacent plates
held in their mean positions. We make the basic assumption that δ << 1. This will allow
us to calculate the action of two adjacent slats on the fluid between them as if they were
infinite planes. We shall examine two approaches to calculation of a critical value of Reω.
We note first that if δ2Reω � 1 then at all instants of motion a Poiseuille channel flow
is established over most of the channels between slats. If simultaneously δReω 	 1, then
within a distance of order δ of the ends of the slat, inviscid dynamics is obtained. Thus we
can envisage an expansion for small δ2Reω which is based upon perturbed Poiseuille flow
with entry and exit conditions determined by an inviscid problem. We shall indicate in
section 5.2 how such an expansion proceeds. The main drawback of this approach is that
a Reωc should satisfy δ2Reωc = O(1), which means that the accuracy of a calculation of
Reωc from a truncation of the expansion is questionable.

A second approach is to assume δ2Reω 	 1, so that the flow throughout the channels
may be taken as approximately inviscid. In section 5.1 we consider this limit and show
that it is consistent with the calculation of Reωc provided that the wing motion is instan-
taneous between its extreme positions (square-wave cycle). This motion will allow us to
separate the flow analysis into a fast inertial phase where viscosity may be neglected, and
a “stasis” where the slats are held fixed and viscous diffusion of the momentum occurs.
We shall find that Reωc = O(δ−3) up to logarithmic terms.

A final limiting case worth consideration is where both δ and δReω are small. Then
Stokes flow prevails throughout, and we may make use of the principle of minimum
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viscous dissipation, see Batchelor (1967). † In this limit the dissipation is obtained by
assuming Poiseuille flow over the entire length of a channel. This is easily minimized for
given flux to obtain a flux through the channel 0 < y < Y given by

q(t) =
δY 3

(δ − Y )3 + Y 3
. (5.4)

The time-averaged drag per slat is then

〈D〉 = Re−1
ω 〈6δY [(δ − Y )3 + Y 3]−1〉, (5.5)

which is a quantity of order Re−1
ω δ−1.

5.1. Analysis of the model with square-wave cycle

Since we assume that δ << 1 and that the blind moves in a square-wave cycle, the flow
within a slat pair can treated neglecting entry and exit effects, that is, as if the channel
were doubly infinite. We shall also neglect any effect of vorticity shed into the external
fluid. This is reasonable because the motion of slat pairs is such that two vortices of
opposite circulation are shed simultaneously. We further note that in this section the
pressure is made dimensionless by division by density times L2ω2.

5.1.1. The inertial phase

Suppose that at t = 0 two slats lie on top of each other at y = δ mod 2δ. We take
the flow field in the region |y| < δ to be U(y), some even function of y with U(±δ) = 0.
Since σ is the dimensionless mass flux through the blind, we must have

∫ δ

0

U(y)dy = δσ. (5.6)

Were U to be a Poiseuille channel flow, it would be given by U = 3
2σ(1 − (y/δ)2).

In the inertial phase slats at y = ±δ abruptly move to y = 0. We thus refer to the
terminal time of this phase as t = 0+. During this movement, the fluid between the slats
is squeezed out, and the vorticity of the initial flow is advected inviscidly. Simultaneously
the fluid fills the expanding channel bounded between the two slats initially at y = δ.
We will consider the fluid flow within the region 0 � y � δ, divided into the ejection
channel 0 � y � Y and the injection channel Y � y � δ. As the slat at δ moves to y = 0,
a flow field (−Ẏ x/Y, Ẏ y/Y ) in the ejection channel advects the initial vorticity toward
the line y = 0. Thus during the inertial phase the flow in the ejection channel is given
by the following exact solution of Euler’s equations:

u = −Ẏ x/Y +
Y

δ
U

(yδ

Y

)
+ u1, (5.7a)

v =
Ẏ y

Y
, p =

Ÿ (x2 − y2)
2Y

− Ẏ 2

Y 2
x2 + u1

Ẏ

Y
x − u̇1x; (ejection). (5.7b)

We have allowed here for a uniform flow u1(t), but will argue below that this term must
vanish if the flow field is to represent correctly the effects of viscosity.

Similarly, in the injection channel Y < y < δ the filling flow has the form (Ẏ x/(δ −
Y ),−Ẏ y/(δ−Y )). As the slats separate we assume that a uniform flow (u2(t), 0), u2(0) =
0 is present to compensate for the flux no longer carried by the ejection region. The

† We thank J.B. Keller for suggesting this calculation.
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corresponding Euler flow will have the form

u =
Ẏ x

δ − Y
+ u2(t), (5.8a)

v =
Ẏ (δ − y)
δ − Y

, p =
Ÿ (x2 − (y − Y )2)

2(δ − Y )
− Ẏ 2

(δ − Y )2
x2

−u2
Ẏ

δ − Y
x − u̇2x + p2(t); (injection). (5.8b)

During the collapse, the sum of the mass fluxes in the two sections must equal σδ:

Y 2

δ2

∫ δ

0

U(s)ds + u1Y + u2(δ − Y ) = σδ. (5.9)

Now we know that the integral on the left of 5.9 equals σδ. Thus

u1Y + u2(δ − Y ) = σδ(1 − Y 2/δ2). (5.10)

We now introduce a basic assumption which will in effect fix the circulation carried
by a slat and determine a unique flow field. We assert now that u1(t) = 0, that is, that
a uniform flow cannot be established in the ejection region, although the corresponding
flow u2 can be established in the injection region. The idea is that, since vorticity within
the flow is being expelled in the ejection region, the vorticity bound to the slat cannot
be changed from the ejection side. The difference in the treatment of the uniform flow in
the two regions is reminiscent of the difference, in a large tank of viscous fluid, between
the injection of fluid at a jet, and its withdrawal at a sink. This condition, which we shall
refer to here as the outflow principle sets the flux in the ejection region at q(t) = σY 2/δ,
and that of the injection region as σδ(1 − Y 2/δ2). If we focus on the region 0 < y < Y ,
then we have that q(t) = σY 2/δ when Ẏ < 0 and q(t) = σ(2Y − Y 2/δ) when Ẏ > 0.
Thus the outflow principle implies

q(t) = σ
[
Y + sgn(Ẏ )Y (1 − Y/δ)

]
. (5.11)

When compared with (5.4), we see that (5.11) introduces non-reciprocal fluid dynamics
into a problem with reciprocal boundary motion, as a result of the asymmetric effects of
viscosity at high local Reynolds numbers. Whenever (5.11) applies, we adopt movements
such a the square-wave cycle, consisting of two abrupt motions, one up and one down,
over a single cycle.

We proceeded to calculate, with assumption (5.11) on q, the x-force experienced during
the inertial phase. Since our calculation is at this point for an inviscid fluid having no
embedded vortex sheets, the only source of an x-force will be suction forces associated
with vorticity singularities at the tips of the slat, and to compute these suction forces
we must consider the flow in the vicinity of the entrance and exit. The only reasonable
calculation that can be done is for irrotational flow, hence we replace the parallel flow
U(y, t) by a uniform flow with the same flux, U(t) = σY/δ. The entire inertial flow is
now irrotational. Of course for flat plate slats the suction singularities replace the viscous
stresses created by the vorticity shed from the slat tips in the real fluid.

We show in Figure 9 a conformal map from the ζ-plane to the physical z-plane, the
latter representing the left (entry) region of a channel, the slat being taken as semi-
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infinite. The mapping (see e.g. Churchill (1948))is given by

z =
δ

π

[
C−k log(ζ +1)−(1−k) log(ζ−1)

]
, C = k log

( y

1 − k

)
+log 2(1−k)+ iπ. (5.12)

The point A in the ζ-plane is (ξA = 2k − 1, 0). The parameter k is defined by kδ = Y ,
and the argument of the logarithm is between −π and +π.

FIGURE 9 GOES HERE

The flow field for the problem we study is given by

u − iv = σ − Ẏ

π
log

(ζ − 1
ζ + 1

)
+

2K

ζ − ξA
, (5.13)

where K is a free constant. The term proportional to Ẏ accounts for the motion of the
slat. The term proportional to K allows canceling fluxes in the injection and ejection
channels, and essentially fixes the circulation of the slat.

To evaluate K it we consider the limit ζ → −1. Then z → ∞ and

u − iv = σ +
Ẏ

πk

[
k log(

k

1 − k
) + log(1 − k) − πz/δ

] − K

k
+ o(1). (5.14)

We thus require

σY/δ = σ +
Ẏ

πk

[
k log(

k

1 − k
) + log(1 − k)

] − K

k
, (5.15)

or, using δk = Y ,

K =
σY

δ
(1 − Y

δ
) +

Ẏ

πδ

[
Y log

( Y

δ − Y

)
+ δ log

(δ − Y

δ

)]
. (5.16)

Consider now the singularity at the point A′ of the z-plane. If the vortex sheet strength
γ(x) has a singularity of the form 2αx−1/2 as x → 0+ then there is a tip suction force of
magnitude πα2, see e.g. Durand (1963), p. 52. Near the point A in the ζ-plane we have
u = γ/2 ≈ 2K

ζ−ξA
, and we find from (5.12) the local approximation

z − kδi =
δ

8πk(1 − k)
(ζ − ξA)2. (5.17)

Thus

πα2 =
K2δ

2k(1 − k)
. (5.18)

To consider the two ends of a slat, we may take the difference of the two values of K2

obtained with ±Ẏ used in (5.16). The dominant expressions cancel and we are left with
net suction force

S =
2δ

k(1 − k)
σY

δ
(1 − Y

δ
)
Ẏ

πδ

[
Y log

( Y

δ − Y

)
+ δ log

(δ − Y

δ

)]
.

= − 2
π

σẎ

∫ δ

0

Y log Y + (δ − Y ) log(δ − Y )dY

=
σδ2

π
(1 − 2 log δ). (5.19)
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δ Reωc

1 9.23
.5 28.2
.25 162

Table 1. Critical Reynolds number for various δ for the venetian blind flapper in square-wave
mode.

5.1.2. The viscous phase
We now consider the viscous phase. Since the inertial phase is taken as instantaneous,

and we are describing one-half of a full flapping cycle, the viscous phase will last time
1/2. We consider the region 0 < y < 2δ, bounded by two now stationary slats. During the
inertial phase this region was filled by an inrush of fluid, which we take to be irrotational.
At t = 0+ a flux of 2σδ is carried by this channel, so the initial velocity will be given by
u = u0 = σ. Subsequently we have (u, v) = (u(y − δ, t), 0) where u(y, t) satisfies

ut − 1
Reω

uyy = Π(t), u(−δ, t) = u(δ, t) = 0,

∫ δ

0

udy = σδ. (5.20)

The solution has the form

u =
3
2
σ[1 − (

y

δ
)2] +

∞∑
n=1

ane−λ2
nt/Reωφn(y) (5.21)

where φn = cos (λny) − cos (λnδ), kn = δλn are the positive roots of tan z = z arranged
as an increasing sequence, and

an

∫ δ

0

φ2
ndy = σ

∫ δ

0

φn

(
1 − 3

2
[1 − (

y

δ
)2]

)
dy. (5.22)

One finds easily
an = 2σ/(kn sin kn). (5.23)

Twice the time integral from t = 0+ to t = 1/2 of the total viscous force exerted at
|x| < 1/2, y = δ− is obtained from (5.21) as

D = δσ[
3

2δ2Reω
+ 2

∞∑
n=1

k−2
n (1 − e−k2

n/(2δ2Reω))]. (5.24)

Note that (5.21) may be evaluated at t = 1/2 to get the function U(y) which should
actually begin the inertial phase.

5.1.3. The critical Reynolds number
The critical Reynolds number is obtained by equating the drag D to the suction force

S, which yields the following equation for δ2Reωc:

δ

π
(1 − 2 log δ) = [

3
2δ2Reωc

+ 2
∞∑

n=1

k−2
n (1 − e−k2

n/(2δ2Reωc))]. (5.25)

We show some values of Reωc in Table 2.
The square-wave cycle has been analyzed under several assumptions which disregard

certain important real fluid effects: (i) Our replacement of U(y), with U(δ−) = 0 by a
uniform flow tends to alter the flow near the tips in a manner which should probably
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decrease the suction force. We therefore surmise that the actual profile will lead to a
reduction in Reωc. (ii) It clear that in a real fluid and for a thin slat, the suction force
computed here as an implied pressure force, must be replaced by viscous stresses cre-
ated at the walls by shed vorticity, see Batchelor (1967), p. 439, Wang (2000), and the
discussion below. The venetian blind model in a real fluid is useful for understanding
viscous thrust generation since the shed vorticity is firmly confined between the invari-
ant streamlines of the channels. (iii) Some vorticity ejected upstream by the collapse of
a channel can be drawn into the adjacent injection channels. The appropriate problem
for the inertial phase would allow for a rotational inviscid flow. For simplicity we have
neglected this effect and taken u2 as a uniform flow.

5.2. Formal expansion in δ2Reω

As a second approach to computing a critical Reynolds number for the flapping venetian
blind, we have investigated the formal expansion of the flow in powers of Reω, an ex-
pansion which in fact can be written as an expansion in δ2Reω. If this latter parameter,
as well as δ is small, then to a first approximation the flow established within |y| < Y
is a Poiseuille channel flow with negligible entry and exit effects. We also must assume
that Y (t) is a smooth function of time, so the slat motion of the square-wave analysis is
excluded. We have noted above that, since δ2Reωc should be of order unity we are faced
with using a truncation of an expansion without control of the error. Nevertheless it is
of interest to see what results are obtained since the approach is in a sense opposite to
that used for the square-wave cycle.

This calculation is straightforward and is summarized in appendix B. There arises
again the issue of indeterminacy of the division of flux between injection and ejection
regions. Let q(t) be the mass flux in the channel 0 < y < Y , so q(t+1/2) is the mass flux
in the channel Y < y < δ. Then the imposition of a fixed flux through the blind imposes
the condition

δσ = q(t) + q(t + 1/2). (5.26)

The two functions on the right are independent of each other and cannot be determined
without some knowledge of the entry flow. We remark that momentum conservation does
not supply an additional relation, since the pressure downstream of the blind is a function
of time, related directly to the instantaneous drag per unit area acting on the blind, see
appendix B. Momentum conservation through the entry serves only to determine the
entry value of the static pressure.

To proceed further we must therefore assume δReω 	 1 so that the outflow principle
applies, with q given by (5.11). We then set Y = δ(1 + a cos(2πt))/2, and there results
the following equation for the average drag 〈D〉:

δReωσ−1〈D〉 =
6√

1 − a2
− 18

35
aδ2Reω − .1216a2δ4Re2

ω + O(δ6Re3
ω). (5.27)

Note that the term of order δ2Reω arises here because of the non-reciprocal flux function.
If we truncate the series at this order, we obtain the values of Reωc shown in Figure 10.

For a ≈ .9 the values of Reωc obtained here are close to the values for the square-wave
cycle. They are larger than but not inconsistent with the observations of Clione, and the
general shape of the curve suggests the importance “body slapping” for the reduction of
Reωc. If we take Reωc = 9/δ2 with δ = 1 to simulate body slapping as an “image” slat,
and take the body length to be twice the chord, then the Reωc based on wing chord would
be about 33. Allowing for three-dimensional effects as well as the body drag, our number
is well above the 5-20 range of Clione. We are using a severely truncated expansion, and
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Ref Reω Drag

16 32 -3.46
16 16 -.066
16 8 1.01
32 32 -1.22
32 16 .46
32 8 .75
64 64 -6.62
64 32 .02
64 16 .41
64 8 .5

Table 2. Drag calculations for Navier-Stokes flow past an flapping thin ellipse, amplitude of
one-half chord

a numerical simulation of the venetian blind model for various Reω and δ will be needed
to pin down precisely Reωc(δ) in this model.

FIGURE 10 GOES HERE

6. A Navier-Stokes calculation of Reωc in two dimensions
Recent calculations of flapping flight in two dimensions by Jane Wang have utilized

a high-accuracy Navier-Stokes code at Re of order 1000 (Wang (2000)). The wing is of
thin elliptical section. Wang has generously carried out for us some preliminary calcula-
tions with this code at lower Reynolds numbers for sinusoidal vertical motion with an
amplitude of one-half the wing chord (total vertical wing excursion= wing chord). In
these calculations, the reference length for the Reynolds numbers is the wing chord. The
results are shown in Table 3.

These values indicate Reωc ≈ 15, and that the bifurcation is supercritical. This number
can be compared to the Reωc of 36 for the model Oseen model of a wing at an amplitude
equal to the chord. Not surprisingly, the Oseen model considerably overestimates Reωc

for flapping flight, probably more a result of the approximate force calculation than the
Oseen linearization. On the other hand the value 15 agrees reasonably well with the
venetian blind model in the square-wave cycle with δ = 1, provided that slat interaction
enhances thrust.

7. General considerations in three dimensions
We consider now the form taken by solutions of the Navier-Stokes equations for a

general reciprocal flapper in three dimensions, given that a finite critical Reynolds number
for flapping flight exists.

For simplicity we assume that the reciprocal motion is such that the center of volume
remains on the line y = z = 0, that it remains at x = y = z = 0 when placed there
without an initial x-velocity and, once flapping flight takes place, is located at (x, y, z) =
(X(t), 0, 0). † Let the time-dependent (dimensionless) flow velocity for the flapping body
sitting at rest be v0(x, y, z, t;Reω), where v0 is periodic in time with period unity. We
shall for convenience assume that Reω is changed by altering the viscosity.

Let σ(t) =
∫ t

0 X(s)ds denote the (small) instantaneous dimensionless velocity. We

† We can accomplish this, for example, with a “flapping biplane”.
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take δReω ≡ Reω − Reωc and σ(t) to be small, and assume that the latter changes
slowly. Let σ(0) = σ0 > 0 determine the initial release velocity of the flapper. According
to Newton’s laws of motion, following release, the total momentum of body and fluid,
relative to coordinates at rest with respect to infinity, must remain constant and equal
to the initial x-momentum of the body, σ0m say, where m is the body mass:

Mb + Mf = σ0m = mσ(t) + Mf . (7.1)

Thus

m
dσ

dt
= −dMf

dt
= Ff (7.2)

where Ff is the force exerted by the fluid on the body. We divide this force into thrust
T and drag D,

m
dσ

dt
= T − D, (7.3)

which we may define and compute quasi-steadily and adiabatically by placing the flapper
in a fixed wind and taking T and D as averages over one cycle of motion. We shall assume
the bifurcation is supercritical.

Let vc(x, y, z, t) be the velocity perturbation caused by placing the flapper, operating
at critical, in the wind. The problem satisfied by vc is then

Reωc[
∂vc

∂t
+ σ

∂vc

∂x
+ vc · ∇vc] + ∇pc −∇2vc = 0, (7.4a)

vc|B(t) = −σi, vc|∞ = 0. (7.4b)
Here B(t) denotes the body surface. Since the bifurcation is supercritical, the average
force experience when operating at critical is drag, so vc determines the D(σ) in (7.3).
Its expansion for small sigma contains no term linear in σ, so

D = o(σ), σ → 0. (7.5)

Now let the solution for Reω = Reωc + δReω be v = vc + δv. Now δv satisfies
an analogous problem with null conditions on the same body surface B(t). The linear
equation satisfied by a small δv is

Reωc[
∂δv
∂t

+ σ
∂δv
∂x

+ δv · ∇vc + vc · ∇δv] + ∇δp −∇2δv = −δReωvc · ∇vc, (7.6)

Thus δv = O(δReω) and the corresponding force will have a term linear in σ, which is
the thrust developed above the critical value of Reω. This determines T in (7.3). We then
obtain an equation of the form

m
dσ

dt
= c1(Reω − Reωc)σ − D(σ), (7.7)

which is consistent with what we see in Figure 5 if D(σ) = O(σ2). The leading term of
D should depend on body shape, but in general we expect D = O(σ2). Figure 7 suggests
D = O(σ3) for the oscillating Oseenlet. The points shown in Table 1 could be compatible
with either ordering.

We emphasize that the nonlinear term in (7.4a) is needed to compute equilibration.
This is the reason for our claim that the bifurcation to reciprocal flapping flight is nec-
essarily accompanied by departure from the Stokesian realm of locomotion.

These general arguments have their counterpart in the venetian blind model, but since
the problem is linear in σ (see appendix B), the only nonlinearity can come from a
modification of the model by the addition of a passive element producing drag, see Figure
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10. Then if Reω > Reωc we have 〈D〉 = DB, where DB is the dimensionless drag of the
attached body. Once supercritical,

DB = C
Ref

Re2
ω

(Reω − Reωc), (7.8)

where C is a positive constant. In our dimensionless formulation, in the Stokesian realm,
body drag would be KνLUf for some positive constant K or in dimensionless form
KRef/Re2

ω per unit area of blind. Thus K = C(Reω −Reωc) and Ref remains undeter-
mined.

We must then modify the drag law by a nonlinear correction,

DB = KRef/Re2
ω(1 + αRef ), α > 0, (7.9)

corresponding to a deviation from Stokes’ drag determined by quadratic term in flow
velocity. Now the supercritical speed Uf is given by

Ref =
1
α

C

K
(Reω − Reωc), Reωc = Reωc +

K

C
. (7.10)

Thus we are led again to a bifurcation diagram which may be compared with Figure 5.

FIGURE 11 GOES HERE

8. Discussion
The fluid dynamics describing the relative motion of “solid” material and fluid divides

roughly into two categories. On the one hand, the fluid can be transported though the
solid, as in Poiseuille flow through a pipe. On the other hand, the body may move through
the fluid, as in the locomotion of fish. These complementary problems share a number of
common features, including an appropriate division into Stokesian and Eulerian realms
Lighthill (1975). The analog of the non-reciprocal, Stokesian swimmer is the peristaltic
pump, see Jaffrin & Shapiro (1971), Childress (1981b). In peristalsis, waves of contraction
move down a flexible pipe and are able to transport fluid at a fixed rate determined by the
frequency of the pumping cycle. More recently, investigations of “valveless pumping” at
high Reynolds numbers have demonstrated similar properties of transport in the Eulerian
realm, using reciprocal motions of the pipe wall (Jung (1999), Jung & Peskin (2001)).

The models considered in the present paper involve elements of both categories of
problems. Oscillatory channel flow such as we have applied in the venetian blind model
can be usefully applied to study peristalsis, see Jaffrin & Shapiro (1971). In a sense the
venetian blind model is an attempt to introduce the simpler fluid transport modeling
into the more difficult problem of locomotion.

If the study is restricted to the Eulerian realm, there may occur symmetry breaking
bifurcations in these problems. Valveless pumping due to deformations of a tube which are
symmetric with respect to a plane perpendicular to the tube axis can pump fluid in either
direction, depending upon the initial conditions. In forward flapping flight, the classical
linear inviscid analysis of a flapping plate of chord L, in sinusoidal motion, leads to a drag
−ρω2L3f(|σ|), where f(0) > 0, f(x) ∼ C/x, x → ∞, see Durand (1963). Thus a thrust
force on the plate, opposite to the flow direction, is realized for flow in either direction.
Symmetry-breaking bifurcations may occur for general flapping bodies whose movements
are symmetric with respect to some co-moving plane, for motion perpendicular to the
plane. This point has been emphasized recently in the interesting context of take-off of
a butterfly from a horizontal plane Imai & Yanagita (2001). In that problem motion is
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vertical and the flapping is reciprocal and symmetric with respect to a plane through the
hinge point.

In these Eulerian problems the bifurcation occurs because of the advection of vorticity
relative to the body, and so is related to the bifurcation we study here. On the other
hand the bifurcation with respect to Reω involves a competition between advection and
diffusion, and there is no special assumption regarding the fore-aft symmetry of the body
or the motion.

The variation with Reynolds number of the thrust achieved in flapping flight is of
some theoretical interest because of the role of viscosity in the process, even when the
Reynolds number is arbitrarily large. According to classical inviscid theories of lift (and
thrust) developed by an airfoil (see, e.g., Batchelor (1967), ch. 6 and Lighthill (1975)), the
leading and trailing edges of the foil are assigned distinctly different roles in determining
circulation. In particular the Kutta-Joukowsky condition is imposed at a sharp trailing
edge, to insure that the inviscid solution has no strong singularity there. This leads to
a smooth flow off the trailing edge, approximating what is observed. This condition on
the inviscid theory is intended to reflect the action of viscous boundary layers, which in
fact develop downstream and introduce a fore-aft asymmetry into the problem.

For edges which are not sharp, and for Reynolds numbers which are not extremely
large, there is no satisfactory theory to replace the classical Kutta-Joukowsky condition,
and as Re → 0 the distinction between fore and aft edges disappears. In the case of
flapping flight, for example the up-and-down movement in two dimensions of a flat plate
aligned parallel to the horizontal free stream, vorticity is generated and shed from both
edges. The vorticity is shed predominately from the downstream edge at large Re, and is
diffused equally from both edges at small Re. Since the configuration of shed vorticity is
ultimately responsible for the instantaneous forces experienced by the foil, the evolution
of this vorticity field must ultimately account for a transitional Reynolds number of the
kind we study here. Various simple explanations may be devised for recovery of thrust
in particular situations. For example, a flapping flat plate produces on the upstroke a
symmetric pair of shed vortices in the absence of a wind. A wind carries these vortices
downstream, allowing the upstream vortex to create a viscous thrust on the lower surface
before another pair of vortices of opposite signs is created on the downstroke. A great
variety of mechanisms is possible for more elaborate movements.

Thus the linear instability associated with bifurcation to flapping flight must ultimately
be understood in terms of the infinitesimal displacements of the vorticity field created by
the flapping wings, when the body is moved slightly through the fluid. The saturation
at constant speed of locomotion must similarly be accounted for by large displacements
of the shed vorticity over a flapping cycle.

The observations and calculations described in this paper support our claim that the
pre-adult stage of Clione antarctica has a critical value of Reω in the range 5-20 based
upon body length. The venetian blind model yields results which support the conjecture
that “body slapping” is a contributor to the locomotion of Clione. Such a mechanism is
reminiscent of the “clap and fling”, believed to be used by some insects at higher Reynolds
numbers, see Lighthill (1975). The numerical evidence is that an isolated flat plate wing
will have a critical value of Reω in this range, based upon chord and dependent upon
amplitude and oscillatory cycle. This transforms to a much larger value of Reωc than
we observe when based upon body length of Clione. The possible role of non-reciprocal
movement, and ciliary contributions, must be kept in mind these comparisons.

For flapping movements of a more general kind, not strictly reciprocal, the crossover
from cilia to flapping may depend upon the relative power requirements and efficiencies
of the two modes. We can estimate that in the lower end of the intermediate Reynolds
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number range 5-20, the force exerted by a wings is ∼ νωL2 and so the power required for
flapping is ∼ νω2L3. On the other hand the drag of the organism is ∼ νUL, and the work
done by the drag force is ∼ νU2L so an efficiency is given by the ratio of the latter to the
former, ∼ σ2. The rapid rise of σ as Reynolds number falls below the intermediate range,
shown in Figure 4, suggests that flapping can be considered ineffective below Re ≈ 5.

In summary, we have attempted in this paper to explain observations of bimodal
swimming of a pteropod mollusc in terms of the existence of a critical Reynolds num-
ber for flapping flight. Below this critical number, the flapping mode is ineffective and
mechanisms appropriate to the Stokesian realm, such as the ciliary propulsion of Clione
antarctica, must prevail. Above the critical Reynolds number, locomotion by flapping
is realized given a suitable initial “push”. The equilibrium velocity in flapping flight is
then determined by nonlinear processes. The resulting fluid dynamics should then move
abruptly toward the high Reynolds number or Eulerian realm.

Although the transition from ciliary to flapping locomotion in Clione antarctica is not
especially dramatic at the Reynolds numbers of our observations, the implications of the
bifurcation to reciprocal flapping flight may deserve further study in the evolutionary
context of natural locomotion. We conjecture that the biological record generally might
reflect the bifurcation discussed here, if an (Reω,Ref ) plot obtained for many species,
yields values in the range 1 < Reω < 100. Reciprocal flapping brings into play the
advection of vorticity, as an alternative to its diffusion, leading ultimately to the larger
speeds and body sizes we associate with flying and swimming in nature.

We thank the staff at McMurdo Station, Antarctica, for their support and encour-
agement. We are indebted to Jane Wang for carrying out the preliminary numerical
calculations reported in section 6, and for allowing their inclusion here.

Appendix A. A classical drag formula by unsteady analysis.
In this appendix we take the reference velocity to be the cylinder velocity U , so that

σ = 1 and ε = Re−1 in (4.1).
We compute , for small r and large t,

I(x, y, t) ≡
∫ t

0

χyy(x − t + τ, y, t − τ). (A 1)

But χxx + χyy = 1
4πεte

−r2/(4εt) and

χxx(x − t + τ, y, t − τ) =
∂

∂τ
χx(x − t + τ, y, t − τ) + χxt(x − t + τ, t, t − τ). (A 2)

Thus

I = χx(x − t, y, t) − χx(x, y, 0) +
∫ t

0

1
4πε(t − τ)

e−[ (x−t+τ)2+y2

4ε(t−τ) ]dτ

+
∫ t

0

x − t + τ

8πε(t − τ)2
e−[ (x−t+τ)2+y2

4ε(t−τ) ]dτ.

= χx(x − t, y, t) − χx(x, y, 0) +
∫ t

0

1
8πε(t − τ)

e−[ (x−t+τ)2+y2

4ε(t−τ) ]dτ

+
∫ t

0

x

8πε(t − τ)2
e−[ (x−t+τ)2+y2

4ε(t−τ) ]dτ. (A 3)

Now χx(x−t, y, t) vanishes as t → ∞ and −χx(x, y, 0) = −x/(2πr2). Letting r2 = a2 � 1
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and averaging the term in x2 over the circle r = a, an operation we indicate by AV E (so
as to apply Faxen’s law), we obtain

AV E

∫ t

0

x

8πε(t − τ)2
e−[ (x−t+τ)2+y2

4ε(t−τ) ]dτ ∼ x

2πr2
+

1
8πε

+ o(1) (A 4)

as a → 0 and t → ∞. Also∫ t

0

1
8πε(t − τ)

e−[ (x−t+τ)2+y2

4ε(t−τ) ]dτ ∼ − 1
4πε

(γ + log (
a

4ε
) + o(1). (A 5)

We note that we can get these results by dividing the integral

I(a) ≡
∫ ∞

0

1
8πεu

e−
1
4ε [u+a2/u]du (A 6)

into integrals from 0 to a and a to ∞. This leads to two equal integrals whose value may
be compared with an exponential integral. This comparison uses∫ ∞

1

[
1√

z2 − 1
− 1

z
]dz = ln 2. (A 7)

Finally, we can use a
2

dI
da to compute the other integral appearing once the average is

taken.
Thus we get

AV E(u) ∼ 1
4πε

[
1
2
− γ − log (

a

4ε
)] + o(a), (A 8)

which is the classical result giving, for a circular cylinder for a � ε:

CD ≈ 4πε
1
2 − γ − log ( a

4ε )
, (A 9)

see Lamb (1945).

Appendix B. The channel expansion
Since the condition δ2Reω � 1 allows a treatment as viscous channel flow, we may

assume that in the domain |y| � Y (t) the velocity will have the form

u = [xf(y, t,Reω) + g(y, t,Reω)], v = h(y, t,Reω), (B 1a)

p =
1
2
x2Γ(t) − Πx + P (y, t,Reω), (B 1b)

where Π(t) is a function of time to be determined after the channel flow has been obtained.
We require that f, g be even in y, that h be odd in y, and that

f(Y, t) = g(Y, t) = 0, h(Y, t) = Ẏ ≡ dY

dt
. (B 2)

The equations to be satisfied by g, h are then seen to be

gyy + Π = Reω[gt − hyg + hgy], hyyy + Γ = −Reω[hty − h2
y + hhyy], (B 3)

with
f = −hy, Reω[ht + hhy] + Py − hyy = 0, (B 4)

the latter being equations determining f , and P (y, t) up to an unimportant function
of time. Note that the pressure term quadratic in x, together with f, h, are associated
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with the symmetric “squeeze flow” due to the oscillation of the walls, g and Π with an
oscillating unidirectional oscillatory Poiseuille flow and its interaction with the squeeze
flow.

We introduce η = y/Y (t) as a new independent variable, together with the new func-
tions

F (η, t) = f(y, t), G(η, t) = g(y, t), H(η, t) = h(y, t). (B 5)
The equations for G, H are then

1
Y 2

Gηη + Π = Reω[Gt − Ẏ

Y
ηGη − 1

Y
(GHη − HGη)], (B 6a)

Y −3Hηηη + Γ = Reω[
1
Y

Hηt − Ẏ

Y 2
(Hη + ηHηη) − 1

Y 2
(H2

η − HHηη)]. (B 6b)

The boundary conditions at η = 0, 1 to be imposed on G, H are then

Gη(0) = H(0) = Hηη(0) = G(1) = Hη(1) = 0, H(1) = Ẏ . (B 7)

These six conditions are uniquely determining on G, H, Γ.
The force on a slat is given by

D(t) =
1

Reω
[− 1

Y (t)
Gη(1, t) +

1
Y (t + 1/2)

Gη(−1, t + 1/2)], (B 8)

there being no contribution from F since the component of u is odd in x.
We seek to solve (B 6) subject to (B 7) as a power series

(G, H, Γ) =
∞∑

k=0

Rek
ω(Gk, Hk, Γk)(y, t). (B 9)

After inserting the power series (B 9) into (B 6), we see from the boundary conditions
(B 7) that

Γ0 = 3Ẏ Y −3, G0 =
1
2
ΠY 2(1 − η2), H0 =

3
2
Ẏ (η − η3/3). (B 10)

The first-order terms, of order Reω satisfy,

(G1)ηη =
1
2
Π̇Y 4(1 − η2) +

1
4
ΠY 3Ẏ (1 − η4), (B 11a)

(H1)ηηη + Y 3Γ1 =
3
2
Y 2Ÿ (1 − η2) − 3

4
Y Ẏ 2(5 − 6η2 + η4). (B 11b)

Using the boundary conditions we then obtain

G1 =
1
24

Π̇Y 4(6η2 − η4 − 5) +
ΠẎ Y 3

8
(η2 − 1

15
η6 − 14

15
), (B 12a)

H1 = −1
6
Y 3Γ1η

3 +
3
2
Y 2Ÿ (

1
6
η3 − 1

60
η5)− 3

4
Y Ẏ 2(

5
6
η3 − 1

10
η5 +

1
210

η7) + C1η, (B 12b)

Γ1 =
6
5

Y 2Ÿ

Y 3
− 102

35
Y Ẏ 2

Y 3
, C1 = − 1

40
Y 2Ÿ +

19
280

Y Ẏ 2. (B 12c)

The terms of second order satisfy

(G2)ηη ≡ g2 = Y 2(G1)t − Y Ẏ η(G1)η − Y [G0(H1)η

+G1(H0)η − H0(G1)η − H1(G0)η], (B 13a)
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(H2)ηηη + Y 3Γ1 ≡ h2 = Y 2(H1)ηt − Y Ẏ [(H1)η + η(H1)ηη]

−Y [2(H0)η(H1)η − H0(H1)ηη − H1(H0)ηη] (B 13b)
With the help of the Symbolic Math Toolbox of MATLAB, we find

g2 = 1/280Ẏ 2ΠY 4η8

+((−11/240Ÿ Π + 1/80Ẏ Π̇)Y 5 + 7/80Ẏ 2ΠY 4)η6

+(−1/24Π̈Y 6 + (7/80Ÿ Π − 1/16Ẏ Π̇)Y 5 − 109/560Ẏ 2ΠY 4)η4

+(1/4Π̈Y 6 + (1/16Ÿ Π + 11/16Ẏ Π̇)Y 5 + 5/16Ẏ 2ΠY 4)η2

−5/24Π̈Y 6 + (−5/48Ÿ Π − 51/80Ẏ Π̇)Y 5 − 117/560Ẏ 2ΠY 4 (B 14)
The term G2 is then given by

G2 = 1/25200Ẏ 2ΠY 4η10

+((1/4480Ẏ Π̇ − 11/13440ŸΠ)Y 5 + 1/640Ẏ 2ΠY 4)η8

+(−1/720Π̈Y 6 − 109/16800Ẏ 2ΠY 4 + (7/2400Ÿ Π − 1/480Ẏ Π̇)Y 5)η6

+(5/192Ẏ 2ΠY 4 + 1/48Π̈Y 6 + (11/192Ẏ Π̇ + 1/192Ÿ Π)Y 5)η4

+(−117/1120Ẏ 2ΠY 4 − 5/48Π̈Y 6 + (−51/160Ẏ Π̇ − 5/96Ÿ Π)Y 5)η2

+61/720Π̈Y 6 + 3359/40320Ẏ 2ΠY 4 + (1003/22400ŸΠ + 3539/13440Ẏ Π̇)Y 5 (B 15)
For H we similarly find

h2 = 3/280Ẏ 3Y 2η8

+((−7/20Ẏ Ÿ + 1/4Ẏ 2)Y 3 + 3/20Ẏ 3Y 2)η6

+(−1/40Y (3)Y 4 + (−9/10Ẏ 2 + 31/40Ẏ Ÿ − Ẏ (−1/8Ÿ − 1/2Ẏ ))Y 3 − 153/140Ẏ 3Y 2)η4

+(3/20Y (3)Y 4 + (−69/70Ẏ Ÿ + 9/20Ẏ 2 − Ẏ (3/20Ÿ + 3/10Ẏ ))Y 3 + 117/140Ẏ 3Y 2)η2

−1/4Y (3)Y 4 + 13/70Ẏ Ÿ Y 3 − 57/280Ẏ 3Y 2 (B 16)

H2 = 1/92400Ẏ 3Y 2η11

+((−1/1440Ẏ Ÿ + 1/2016Ẏ 2)Y 3 + 1/3360Ẏ 3Y 2)η9

+(−1/8400Y (3)Y 4−51/9800Ẏ 3Y 2+(−Ẏ (−1/420Ẏ−1/1680Ÿ )+31/8400Ẏ Ÿ −3/700Ẏ 2)Y 3)η7

+(39/2800Ẏ 3Y 2+1/400Y (3)Y 4+(−23/1400Ẏ Ÿ +3/400Ẏ 2−Ẏ (1/400Ÿ +1/200Ẏ ))Y 3)η5

+(−349/25872Ẏ 3Y 2 − 13/2800Y (3)Y 4 + (181/6300Ẏ Ÿ − 13/3150Ẏ 2

+1/2Ẏ (1/120Ẏ − 1/240Ÿ ) − 1/2Ẏ (11/4200Ẏ − 19/8400Ÿ ))Y 3)η3

+(19/8400Y (3)Y 4 + 1153/258720Ẏ 3Y 2 + (−187/16800Ẏ Ÿ + 1/2400Ẏ 2−
1/2Ẏ (1/120Ẏ − 1/240Ÿ ) + 3/2Ẏ (11/4200Ẏ − 19/8400Ÿ ))Y 3)η (B 17)

Recalling the mass balance δσ = q(t) + q(t + 1/2), we have

q(t) = q0 + Reωq1 + Re2
ωq2 + . . . . (B 18)

We obtain from the results given above,

q0 = Ẏ +
1
3
Y 3Π, (B 19a)
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q1 = − 2
15

Π̇Y 5 − 8
105

ΠẎ Y 4, (B 19b)

q2 = 17/315Π̈Y 7 + (53/315Ẏ Π̇ + 136/4725Ÿ Π)Y 6 + 6421/121275Ẏ 2ΠY 5 (B 19c)

Note that the term Ẏ in (B 19a) will not contribute to q(t) since Ẏ (t + 1/2) = −Ẏ (t).
This is a crucial aspect of mass balance, which results from the mass flux ejected from a
squeeze flow in one channel reentering an adjacent, expanding channel.

The conservation of x-momentum can be similarly considered. Momentum conservation
(again neglecting forces associated with edge effects) implies the two conditions

2〈Y 〉σ2 = S−(t) + S−(t + 1/2) ≡ Min

S− = Y

∫ 1

0

[(G +
1

2Y
Hη)2 + Re−1

ω (
1
2
Π +

1
8
Γ + P )]dη. (B 20a)

2〈Y 〉σ2 + p−∞ = S+(t) + S+(t + 1/2) ≡ Mout,

S+ = Y

∫ 1

0

[(G − 1
2Y

Hη)2 − Re−1
ω (

1
2
Π − 1

8
Γ − P )]dη. (B 20b)

The difference between Min and Mout must equal the rate of change of channel momen-
tum (which vanishes upon integration over the channel area, because it is proportional
to the mass flux), plus D(t), yielding the relation δp−∞ = −D(t). The time dependence
of the downstream pressure is a peculiarity of our dealing with a blind which is infinite in
y, z. The blind acts as an “actuator plane” and the instantaneous drag can be balanced
only by a pressure difference across the plane.

Thus the momentum balance at each edge provides a way of computing the pressure
at the channel edges, but momentum balance provides no new constraint on Π. Since
the mass conservation involves simultaneously q(t) and q(t + 1/2), q(t) and therefore Π
remain undetermined.

Consider now the use of the outflow principle and the assumption δReω 	 1, leading
to the flux function (5.11). We may now solve

q − Ẏ = −Ẏ + q0 + Reωq1 + Re2
ωq2 + O(Re3

ω) (B 21)

for Π by inversion of the series. This yields

Π = Π0 + ReωΠ1 + Re2
ωΠ2 + O(Re3

ω), (B 22a)

Π0 = 3Y −3q, Π1 =, Π1 = 3y−3[
2
15

Π̇0Y
5 +

8
105

Π0Ẏ Y 4], (B 22b)

Π2 = 3Y −3[
2
15

Π̇1Y
5 +

8
105

Π1Ẏ Y 4

−17/315Π̈0Y
7 − (53/315Ẏ Π̇0 − 136/4725Ÿ Π0)Y 6 − 6421/121275Ẏ 2Π0Y

5]. (B 22c)

To calculate now the drag D(t) per unit length on one slat, recall that

D(t) =
1

Reω
[− 1

Y (t)
Gη(1, t)+

1
Y (t + 1/2)

Gη(−1, t+1/2)] ≡ 1
Reω

(D0+ReωD1+Re2
ωD2+. . .).

(B 23)
From (B 10) and (B 12a) we obtain

D0 = ΠY (t) + ΠY (t + 1/2), (B 24a)
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D1 = −[
1
3
Π̇Y 3(t) +

1
5
Ẏ Y 2Π](t) − [

1
3
Π̇Y 3(t) +

1
5
Ẏ Y 2Π](t + 1/2), (B 24b)

D2 = 2/15Π̈Y 5 + (38/525Ÿ Π + 44/105Ẏ Π̇)Y 4 + 206/1575Ẏ 2ΠY 3 (B 24c)
Inserting the functions Πi from (B 22), and then averaging over time, we obtain (5.27).
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Figure 1:Sketch of Clione antarctica (typical length 6 mm) indicating three bands of
cilia (c) and the extended wings (pteropodia). Extreme positions of wings against body
as sketched from video, flapping frequency 2.25 cycles/sec. A. Ventral perspective, the
arrow indicating the direction of body movement, and c the ciliary bands. B. Anterior
perspective.
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Figure 2: Rc versus Rf for swimming of Clione antarctica, averaged data corrected for
buoyancy. The dashed line is the line Rec = Ref .
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Figure 3: Rc versus Rf for swimming of Clione antarctica, averaged data uncorrected
for buoyancy. The dashed line is the line Rec = Ref .
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Figure 4: The solid circles are values of σ−1 and Ref from observations of the flapping
mode of Clione antarctica. Both parameters are corrected for buoyancy. The open circles
are for the model of subsection 4.2, computed with k = 10, N = 10, and L = 1. The
solid line is the hyperbola Reω = 12, and the dashed line is the hyperbola Reω = 36.
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Figure 5: Buoyancy-corrected Ref as a function of Reω = ωL2/ν = Ref/σ.
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Figure 6: Scatter plot of swimming speed versus body size in ciliary mode.
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Figure 7: Surface plot of −〈U〉 as a function of 2Reω and 2Ref for an oscillating
Oseenlet with position u = sin 2πt, see section 4.1 The damped Oseen model is used here
with k = .4. The drag coefficient is set to make Reωc = 5. Bifurcation to flapping flight
occurs when 〈U〉 = −1. The function Ref (Reωc) is indicated by a solid line, representing
the intersection of the surface with the plane −〈U〉 = 1.
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Figure 8: The venetian blind model. The flow is horizontal. The oscillations are as
shown by the arrows. The horizontal dotted lines are invariant streamlines of the flow
field.
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Figure 9: A conformal map of the entry region of a channel. The point A′ is the left
edge of the slat, and D′C′F ′E′ outlines its channel. The domain is the upper half of the
ζ-plane.
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Figure 10: δ2Reωc versus flapping amplitude a for the venetian blind in sinusoidal
motion, as computed by expansion in δ2Reω through three terms.
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Figure 11: Finite venetian blind locomotor dragging a body.


