1. Consider the telegrapher's system

$$
i_{x}+C v_{t}+G v=0, v_{x}+L i_{t}+R i=0
$$

on the domain $0 \leq x \leq l, t>0$. Multiply the first equation by v, the second by i, and add to get

$$
(i v)_{x}+C\left(v^{2} / 2\right)_{t}+L\left(i^{2} / 2\right)_{t}+G v^{2}+R i^{2}=0
$$

Given initial conditions $i(x, 0)=i_{0}(x), c(x, 0)=v_{0}(x), 0 \leq x \leq l$ show that there is at most one solution to the IBVP with these initial conditions and certain boundary conditions on $x=0, l$. What are the possible boundary conditions where this energy method works? (You may use the following differential inequality: If $y(x) \geq 0$ is differentiable with $d y / d x \leq-\alpha y, \alpha>0$, for all $x \geq 0$, then $y(x) \leq y(0) e^{-\alpha x}$ for all $x \geq 0$.)
2. (a) Show that the sequence of integrable functions $f_{n}(x)=n^{-1}|x|^{\frac{1}{n}-1} \rightarrow 2 \delta(x)$ as $n \rightarrow \infty$, as follows: Show that for every test function ϕ and $\epsilon=n^{-\alpha}, \alpha>0$,

$$
\begin{gathered}
\int_{-\infty}^{+\infty} \phi(x) f_{n}(x) d x=\int_{-\infty}^{-\epsilon} \phi(x) f_{n}(x)+\int_{-\epsilon}^{+\epsilon} \phi(x) f_{n}(x) d x+\int_{+\epsilon}^{\infty} \phi(x) f_{n}(x) d x \\
\rightarrow 0+2 \phi(0)+0, n \rightarrow \infty
\end{gathered}
$$

(Note that α must be appropriately chosen. Also recall that any test function has continuous derivatives of all orders for all x and vanishes outside a finite interval.)
(b) Show that $x \delta^{\prime}(x)=-\delta(x)$ where δ^{\prime} is the derivative of $\delta(x)$.
3. Problem 8.7 of text, page 316. Note that in this problem $c=1$ and $L=\pi$.
5. Find solutions of the IBVP given by

$$
\begin{gathered}
\left.u_{t t}-c^{2} u_{x x}=0,\right)<x<L, t>0 \\
u(0, t)=0, u(L, t)+u_{x}(L, t)=0, t \geq 0, u_{t}(x, 0)=0
\end{gathered}
$$

in the variables-separated form $u=T(t) X(x)$.
(a) Show X satisfies $X^{\prime \prime}-K X=0, X(0)=0, X(L)+x^{\prime}(L)=0$ and argue that $K=-\lambda^{2}$ for real λ.
(b)Show that the eigenvalue λ satisfies $\tan (\lambda L)=-\lambda$. Graph $\tan z$ and $-z / L$ versus z and indicate roughly the eigenvalues on this graph. Using a calculator or Newton's method calculate the first four eigenvalues λ_{n} to three or four decimal places. Indicate why $\lambda_{n} L \approx(2 n-1) \pi / 2$ for large n and a fixed L;
5. Show that sound waves may be treated using a potential ϕ satisfying the wave equation $\phi_{t t}-c^{2} \nabla^{2} \phi=0$ with velocity $\mathbf{u}=\nabla \phi$ and pressure $p=-\phi_{t} / \rho_{0}$. Here $c^{2}=d p / d \rho\left(\rho_{0}\right)$. Find the potential of the threedimensional, spherically symmetric sound field emitted by an oscillating sphere. Assume oscillations are of amplitude a about a radius r_{0}, where $a \ll r_{0}$, so the boundary condition to be satisfied is

$$
\frac{\partial \phi}{\partial r}\left(r_{0}, 0\right)=a \sin \omega t
$$

approximately. (Why is the last expression approximately correct?) Assume also that only outgoing waves appear in the solution. From your expression for ϕ compute the radial velocity field $u_{r}=\frac{\partial \phi}{\partial r}=\phi_{r}$. Your expression will involve the dimensionless parameter $\Omega=\omega r_{0} / c$. (The frequency of the standard note A above middle C is 440 Hertz, or cycles per second, in which case $\omega=880 \pi$. Taking $r_{0}=1 \mathrm{~cm}$ and $c=350 \mathrm{~m} / \mathrm{sec}$ we get $\omega r_{0} / c \approx .08$. We may take the parameter to be of order unity.) The length scale $R=c / \omega \approx 12 \mathrm{~cm}$ separates the "near" and "far" fields of the sound pattern. Discuss the r-variation of ϕ_{r} in the two cases $r_{0}+a<r \ll R$ and $r \gg R$.
6. Establish uniqueness of the solution of the IVP for the wave equation in N dimensions using the energy method, in the following case:
(a) Show that if u is twice continuously differentiable and $u_{t t}-c^{2} \nabla^{2} u=0$, for $t>0$, all \mathbf{x}, with $\nabla^{2}=\frac{\partial^{2}}{\partial x_{1}^{2}}+\ldots+\frac{\partial^{2}}{\partial x_{N}^{2}}$, and also either u or u_{t} is identically zero outside a sphere of some large radius R centered at the origin, then the energy

$$
E(t)=\frac{1}{2} \int_{-\infty}^{+\infty} \ldots \int_{-\infty}^{+\infty}\left(u_{t}^{2}+c^{2}(\nabla u)^{2}\right) d x_{1} \ldots d x_{N}
$$

is constant in time. Use the fact that then the range of influence of the initial data lies inside the sphere or radius $R+c t$ at time t.
(b) Then obtain uniqueness by considering the null initial conditions $u_{t}=0, u=0$.

