1. Solve, using characteristics, the following problem for a nonlinear wave equation:

$$u_t + u^2 u_x = 0, \ u(x_0, 0) = \begin{cases} 0, & \text{if } x_0 < 0, \\ x_0, & \text{if } x_0 \ge 0. \end{cases}$$

Show that u is constant on a characteristic and that the characteristics are straight lines. Then find u(x,t) as an explicit function of x, t for t > 0. Check your answer by differentiation.

2. Consider

$$u_t + u^3 u_x = 0$$
, $u(x_0, 0) = \begin{cases} 0, & \text{if } x_0 < 0, \\ 1, & \text{if } x_0 \ge 0. \end{cases}$

Indicate the structure of the solution in the x, t plane, indicating in particular the function u = F(x/t) which holds in the expansion fan.

- 3. Devise a model for a one-way road which changes from one to two lanes at x=0. Both density and velocity will generally change at such a lane change. Assume $\rho=\rho_1<\rho_m$ and $u=u_1=u_m(1-\rho_1/\rho_m)$ for x<0. Assume that as drivers cross x=0, one-half of them instantaneously switch lanes and take up the appropriate new velocity. This means that the drivers will then move with a speed $u_2=u_m(1-\frac{1}{2}\rho_2/\rho_m)$, where ρ_2 is the density of the two-lane road, i.e. the number of cars per unit length including both lanes. Explain this formula for u_2 . Determine the new constant density ρ_2 in x>0 from the conservation of traffic flux at x=0, namely $\rho_1u_1=\rho_2u_2$. Reject any solution which gives $\rho_2>\rho_m$ as unphysical. Show that $u_2>u_1$. Make a plot of u_2/u_1 as a function of ρ_1/ρ_m for $0<\rho_1<.9$, to show the effect of lane addition on traffic speed. How would you generalize this model to one lane into N lanes, N>2?
- 4. Consider $u_t + uu_x = 0$, $u(x,0) = e^{-x^2}$. We know that shock formation occurs at the earliest time and position where the Jacobian $\frac{\partial x}{\partial x_0}$, associated with the characteristic lines $x = x(x_0, t)$, vanishes. Find the time and position of shock formation in this IVP.
- 5. After a football game the exit traffic onto a single-lane one-way road build up then falls to zero. At time t=0 the density of the traffic is:

$$\rho(x,0) = \begin{cases} 0, & \text{if } |x| > 2 \text{ miles,} \\ 100(x+2) \text{ vehicles/mile,} & \text{if } 2 \le x \le 0, \\ 100(2-x) \text{ vehicles/mile,} & \text{if } 0 \le x \le 2. \end{cases}$$

Assume our standard model with $u_m = 60$ mph and $\rho_m = 250$ vehicles/mile. (x is measured in miles and t in hours.)

- (a) Using characteristics, map out the function $\rho(x,t)$, indicating the regions of simple waves and the position x_s, t_s and time of shock formation. Show that the shock forms at time $t = t_s = 1/48$ hours ,i.e. 75 seconds.
- (b) Using the shock speed formula, compute the path of the shock, $x = \xi(t), t > t_s$. (You will have to solve a first-order ODE, of a kind discussed in class.)
- (c) Make a careful sketch of characteristics pattern in the (x,60t) plane, indicating the position of the point of initial shock formation and indicating roughly the path of the shock.