1. Let $f(x)$ have Fourier transform $\hat{f}(k)$, that is $\hat{f}(k)=\mathcal{F}(f)$. Show that, if $\hat{f}(k) \rightarrow 0$ as $k \rightarrow \pm \infty$, that $\mathcal{F}^{-1}\left(\hat{f}^{\prime}(k)\right)=-i x \mathcal{F}^{-1}(\hat{f})$. From this deduce that $x f(x)$ has the Fourier transform $-i \hat{f}^{\prime}(k)$. Use this to find the Fourier transform of $x e^{-\alpha|x|}, \alpha>0$.
2. Find the Fourier transforms with respect to x of the following differential equations:

$$
\begin{gathered}
(a) \frac{\partial f}{\partial t}+\frac{\partial f}{\partial x}-\frac{\partial^{3} f}{\partial x^{3}}=0 \\
\frac{\partial f}{\partial t}+x \frac{\partial f}{\partial x}=0
\end{gathered}
$$

In (b) make use of problem (1) above.
3. From the derivation of the fundamental solution (with $\mathrm{k}=1$) $T=\frac{1}{\sqrt{t}} F(\eta), \eta=x / \sqrt{t}, F=\frac{1}{2 \sqrt{\pi}} e^{-\eta^{2} / 4}$ we arrived at the equation

$$
F_{\eta}+\frac{1}{2} \eta F=C=\text { constant }
$$

Show that, if the constant is not taken equal to zero, there is another solution

$$
S(x, t)=\frac{1}{\sqrt{\eta}} G(\eta), G(\eta)=e^{-\eta^{4} / 4} \int_{0}^{\eta} e^{u^{2} / 4} d u
$$

Dividing \int_{0}^{η} into $\int_{0}^{M}+\int_{M}^{\eta}$ with $0<M<\eta$, and using integration by parts, show how the G behaves as $\eta \rightarrow \infty$, and in particular that it decays algebraically like $\frac{1}{\eta}$, not exponentially.
4. Use the Fourier transform to find the fundamental solution of the partial differential equation

$$
\frac{\partial u}{\partial t}+\frac{\partial^{4} u}{\partial x^{4}}=0
$$

Express you answer as an inverse Fourier transform. Show that the answer has the form $u=t^{-1 / 4} f\left(x / t^{1 / 4}\right)$. Derive a differential equation for f from this form and show that it reduces to $\eta f-4 f \eta \eta \eta=0$, given that F and its derivatives vanish at infinity. Show that the Fourier integral solution satisfies this differential equation.
5. Find the solution of the following inhomogeneous IBVP for the heat equation:

$$
\begin{gathered}
T_{t}-k T_{x x}=1,0<x<\pi \\
T(0, t)=1, T(\pi, t)=3, T(x, 0)=0
\end{gathered}
$$

Your solutions will be in the form

$$
T=f(x)+\sum_{n=1}^{\infty} c_{n} e^{-n^{2} k t} \sin n x
$$

where the c_{n} should be given explicitly.
6. Suppose that the IVP for the 1D heat equation on $-\infty<x<+\infty$ is solved with $u(x, 0)=$ $f(x), f(-x)=-f(x)$. Show that the solution may be written in the form

$$
u(x, t)=\int_{0}^{+\infty} f(\xi)[U(x-\xi, t)-U(x+\xi, t)] d \xi
$$

where U is the fundamental solution. From this deduce that u is the solution to the IVP for the half interval $x>0$, with initial values $f(x)$ on this interval, subject to the boundary condition $u(0, t)=0$. This is an example of the reflection method.

