Evaluation of a a contour integral considered in lecture 6

We saw that

$$
\frac{\sqrt{\pi}(1+i)}{2 \sqrt{2}}=\int_{0}^{\infty} e^{i x^{2}} d x=\int_{0}^{\infty} e^{i R^{2} e^{i \pi / 4}} e^{i \pi / 8} d R=I
$$

when we integrated from $(0,0)$ to $(0, R)$, then along $|z|=R$ to the ray $\theta=\pi / 8$, then along that ray to $(0,0)$, after letting the arc move off to infinity.

Now $e^{i \pi / 8}=2^{-1 / 4} \sqrt{1+i}$. Thus we have

$$
I=\sqrt{1+i} \int_{0}^{\infty} e^{-t^{2}} e i t^{2} d t
$$

Thus

$$
\int_{0}^{\infty} e^{-t^{2}} \cos \left(t^{2}\right) d t=\sqrt{\pi / 8} \Re \sqrt{1+i} .
$$

But if $\sqrt{1+i}=a+i b$, the $1+i=a^{2}-b^{2}+2 i a b, a^{2}-b^{2}=1,2 a b=1$. Solving for $a>0$ we get $a=\sqrt{\frac{1+\sqrt{2}}{\sqrt{2}}}$. Thus

$$
\int_{0}^{\infty} e^{-t^{2}} \cos \left(t^{2}\right) d t=\frac{1}{4} \sqrt{\pi} \sqrt{1+\sqrt{2}}
$$

