Examples from Lecure 12: Integration along a branch cut.

1.

$$
I=\int_{0}^{\infty} \frac{d x}{\sqrt{x}\left(1+x^{2}\right)}
$$

Here we can chose a contour either of type A or B. I will work out using A, and you should try it using B. Contours here are all positively oriented, and the subcontours $C+1 \ldots C_{4}$ are numbered as shown. The small cicular arcs have radius ϵ, the large ones radius R.

Now by the residue theorem, with $f(z)=\left(\sqrt{z}\left(1+z^{2}\right)\right)^{-1}$,

$$
\int_{C_{1}+C_{2}+C_{3}+C_{4}} f(z)=2 \pi i \operatorname{Res}_{z=i} f(z) d z=\pi e^{-i \pi / 4}=\pi(1-i) / \sqrt{2}
$$

Also

$$
\begin{gathered}
\lim _{R \rightarrow \infty} \lim _{\epsilon \rightarrow 0} \int_{C_{1}} f(z) d z=I \\
\lim _{R \rightarrow \infty} \lim _{\epsilon \rightarrow 0} \int_{-C_{3}} f(z) d z=e^{i \pi / 2} I \\
\left|\int_{C_{2}} f(z) d z\right| \leq \pi \frac{R}{\sqrt{R}\left(R^{2}-1\right)} \rightarrow 0, R \rightarrow \infty \\
\left|\int_{C_{4}} f(z) d z\right| \leq \pi \frac{\epsilon}{\sqrt{\epsilon}\left(1-\epsilon^{2}\right)} \rightarrow 0, \epsilon \rightarrow \infty .
\end{gathered}
$$

Thus, taking the limits of all terms and noticing that we calculated the intgegral over $-C_{3}$, not C_{3}, we have

$$
(1-i) I=\pi(1-i) / \sqrt{2}
$$

or $I=\pi / \sqrt{2}$.
2.

$$
I=\int_{0}^{\infty} \frac{(\ln x)^{2}}{1+x^{2}} d x
$$

Then $f(z)=(\log z)^{2} /\left(1+z^{2}\right)$ with the branch taken as $\log z=\ln r+i \theta, 0<\theta<2 \pi$. We choose contour A. You should show that contour B will not work because the integral contributions we are trying to evaluate actually cancel out in the limit if that contour is use.

So with A we have again

$$
\begin{gathered}
\lim _{R \rightarrow \infty} \lim _{\epsilon \rightarrow 0} \int_{C_{1}} f(z) d z=I \\
\lim _{R \rightarrow \infty} \lim _{\epsilon \rightarrow 0} \int_{-C_{3}} f(z) d z=-e^{i \pi} \int_{0}^{\infty} \frac{(\ln r+i \pi)^{2}}{1+r^{2}} d r
\end{gathered}
$$

Also

$$
\begin{gathered}
\int_{C_{1}+C_{2}+C_{3}+C_{4}} f(z)=2 \pi i \operatorname{Res}_{z=i} f(z) d z=2 \pi i\left[(\ln i)^{2} /(2 i)\right]=-\pi^{2} / 4 . \\
\left|\int_{C_{2}} f(z) d z\right| \leq \pi \frac{R(\ln R)^{2}}{\left(R^{2}-1\right)} \rightarrow 0, R \rightarrow \infty \\
\left|\int_{C_{4}} f(z) d z\right| \leq \pi \frac{\epsilon\left[(\ln \epsilon)^{2}+\pi^{2}\right]}{\left(1-\epsilon^{2}\right)} \rightarrow 0, \epsilon \rightarrow \infty
\end{gathered}
$$

Finally, we note that

$$
\int_{0}^{\infty} \frac{d x}{1+x^{2}}=\pi / 2
$$

using the antiderivative $\tan ^{-1} x$. Thus we have

$$
2 I+2 \pi i \int_{0}^{\infty} \frac{\ln r d r}{1+r^{2}}-\pi^{3} / 2=-\pi^{3} / 4
$$

showing that $I=\pi^{3} / 8$ and

$$
\int_{0}^{\infty} \frac{\ln r d r}{1+r^{2}}=0
$$

A

