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1 General remarks

This course will be devoted to primarily to natural locomotion in a dissipative fluid. Natural because
we will be looking at the evolved mechanism of swimming and flying in the natural world, as opposed
to solutions to transport devised by our technology. The role of dissipation is important and will
be touched on below. Today I will not be getting into many technical details, but will try to give a
sense of the scope of the course.

What do we mean by locomotion? Intuitively, it is what we do to get from point A to point
B # A. Forward flight is certainly an example of locomotion in birds and insects. In flying we
generally accept that the locomoter is not neutrally buoyant, so part of the locomotion is maintaining
vertical position. We add that some fish use fins in a way similar to the wings of a bird, and so their
motion might be termed flying as well. On the other hand passive motion, such as that obtained
by varying the buoyancy, something marine animals can do, should not be considered locomotion
proper, nor should diffusion of microscopic particles by Brownian motion.

Hovering of a heavy body will be considered as a kind of locomotion, even though the object does
not to move at alll The reason for this is that a heavy hovering body delivers momentum downward
to maintain position in a gravitational field. This downwash is a flow through which the hovering
body can be said to “fly”. Flying combines aspects of both hovering and swimming, in a sense. A
kind of complementary problem is the pumping of fluid through a tube by the movement of the tube
walls, so-called “valveless pumping”. Many of the techniques models used in locomotion also apply
to the study of pumping.

The models of locomotion we shall study will all involve time-dependent motions of the body.
Thus the fluid dynamics is largely nonsteady, that is all variables depend on both space and time.
While this is a source of some difficulty in the analysis, it gives rise to a rich set of interesting flow
problems, only a few of which have been studied in detail.

2 Characteristic parameters

In our analysis of locomotion the most important physical parameters are: a length L typical of the
locomoter; a speed U of locomotion, a frequency w of the body movements causing the locomotion,
the viscosity of the fluid, u, and the fluid density, p. We shall be dealing with an incompressible
Newtonian viscous fluid (to be defined mathematically next lecture), so sound speed will not be
involved, and it turns out that only the ratio u/p = v, called the kinematic viscosity arises in the
dynamics. This parameter has dimensions [v] = length?/time. From the parameters L, U, w, v there
are then two distinct dimensionless parameters, where length and time dimensions cancel. The first
and most important is the Reynolds number Re = UL/v. This parameter measure the importance



of inertial forces relative to viscous forces. When you abruptly move your hand through water, the
force you feel is mainly inertial, associated with your accelerating the water. The Reynolds number
of this movement is very large. (Estimate it yourself using v &~ .01 cm?/sec for water.) But, if you
move a spoon slowly through very thick honey, you are feeling mainly viscous forces and the value
of Re is much less than 1.

The second dimensionless parameter is the Strouhal number St = . This is a dimension-
less frequency parameter whose importance can be appreciated only after we consider models of
locomotion in more mathematical detail.

There is a third, derived parameter Re,, = wL?/v = ReSt, called the frequency Reynolds number.
This parameter will also be of interest to us. The reason for considering Re,, is that it is a Reynolds
number based entirely upon intrinsic properties of the locomoter (L, w) and fluid medium (v). Re is
dependent as well on the swimming speed U, which is not known a priori, and will generally depend
on exactly how the locomoter changes its shape (by flapping wings or tail e.g.).

In the table which follows we estimate these parameters for various creatures:

Locomoter [ L(em) [ U (em/sec) [ weec ) [ UL/v=Re | wL/U=St | wL?/v = Rey, Remarks

Stokesiam Bacterium 10— 5 102 — 103 107 10— 5 10 — 102 10~ 3 — 10 % Limit of Navier-Stokes theory.
realm Spermatozoan 102 —10 3 102 102 102 —10 3 10 — 102 10~ T Flag. diam.~ 10~ °cm.

Ciliate 10— 10— 1 10 10~ 1 1 10— 1 cilium lengtha~ 10~ Scm.
Intermediate | Small wasp 10— 2 10— 1 10 10— 1 1 10— 1 U is wing speed hovering
realm Preropod 5 5 T 25 1 10 Flapping mode.
Eulerian Locust 4 400 20 107 .2 103 Wing Re approx2000
realm Pigeon 25 102 — 103 5 10° .25 107 Wing Re ~ 107

Fish 50 100 2 5 x 107 1 107

If gravity is important, as in the wave riding of dolphins, another dimensionless parameter appears
because of the introduction of the acceleration of gravity, g, with dimensions [g] = length/time?.

This is the Froude number F' = g—;. Gravity plays no role if the locomoter is neutrally buoyant, and
in problems of flight determines the relative weight of the body.

Finally, other parameters arise if there are interactions between locomoters, as in the schooling of
fish, formation flight of birds, swarming of insects, and the interesting phenomenon of bioconvection
of microorganisms.

Observe in the above table that the range of Reynolds numbers is enormous, much greater than
that of the Strouhal number. That is something one would like to understand from the mechanics of
swimming and flying. In fact, in the forward flight of birds and insects one sees almost universally
that St is in the range .2-.4. This strongly suggests that these values are in some way associated
with efficient flight, given the high energetic cost of flapping flight. This is the kind of thing we can
hope to understand through analysis of locomotion from first principles.

I have emphasized the dissipation of the fluid and have divided the table into a Stokesian realm
where Re is small and viscous forces large, an Eulerian realm where Re is large and the viscous
forces nominally small, and an Intermediate realm in between. In the Stokesian realm, the viscous
dissipation is large, and momentum is diffused almost instantaneously. In the mathematical limit of
zero Re, this has a remarkable consequence: At each instant of time, the position of fluid particles
is a unique function of the instantaneous body position. Thus as the body moves though a path of
shapes, all points of the fluid external to the body move simultaneously along paths, and if the path
through shapes is reversed and the body returns to its starting position, so do all fluid particles.

Consider now a cycle of shape changes, with starting and ending shapes the same, so that we
have a closed loop in “shape space”. Suppose that the cycle is reciprocal in the sense that the
sequence of shapes is invariant under time reversal. It then follows that the body cannot locomote.



The “proof” is as follows: As shapes change through a forward cycle, let the body move from point
A to point B # A. Now reverse time and go pack through the cycle. The body must then move
from B to A. But this is impossible since the motion is assume to be reciprocal and the sequence is
the same under time reversal, i.e. it actually must move to B+ (B — A) = 2B — A thinking of A, B
as position vectors. If 2B — A = A we have A = B, so in fact there is no locomotion at all. This
result is often called the Scallop Theorem since the opening and closing of a scallop as it propels
itself is a reciprocal motion. (It follows that scallops do not locomote in the Stokesian realm!)

You might have noticed that I am here using time as a parameter, not as a dynamic variable.
It is unimportant (within the limits of low Re theory) how fast the scallop may open of close. If it
opens fast and closes slowly, or the opposite, the result is the same- no locomotion at Re = 0. All
that matters is the sequence of shapes, not the timing of the changes.

Nature has devised a rich array of nonreciprocal shape changes to propel organisms in the Stoke-
sian realm. Most depend upon slender organelles, flagella or cilia, moving in a nonreciprocal manner.
We will study how locomotion is accomplished in these cases, and see that it depends upon the fact
that a slender body has, in a rough sense, a local resistance to transverse motion (motion perpen-
dicular to the line of the body) which is about twice that of parallel motion (along the line of the
body).

In the Eulerian realm, I have noted that viscosity is “nominally” not important. This is not to
say that the effects of viscosity are negligible, however, since in localized regions such as boundary
layers viscous stresses cannot be neglected, even to first approximation, in the fluid dynamics. We
deal with a continuous fluid, and as long as there is some viscosity, the fluid will adhere to a solid
surface. The fluid at the surface must move with the surface. If one takes the mathematically drastic
step of setting v = 0, it become possible physically for the fluid to simply slip over a surface, so
that the only condition at a solid wall must be that fluid cannot penetrate into the wall, with no
constraint on tangential components.

If v = 0 identically we say that the fluid is ideal or inviscid. The simplest inviscid motions have
the property that they are irrotational. To define this term, let u(x,t) be the velocity field of the
fluid. (This is an Eulerian field, a distinction I shall try to clarify next week.) The vorticity field is
then w = V x u(x,t). An irrotational flow has w = 0, and so u(x,t) = V¢ with ¢ the potential of
the flow.

Now the fluid dynamics of inviscid flow establishes the following:

e If a body moves steadily through an inviscid fluid which is at rest at oo, then the vorticity
must vanish everywhere, and the flow is a potential flow.

e If a regular potential flow exists in the exterior of a body moving with speed U, then the force
on the body is zero, and no work need be done to keep the body in motion.

Thus, in this inviscid setting, the locomotion problem becomes trivial. A body once in motion
will just keep moving. (I should mention that the moment acting on the body need not vanish, so
a free object will tumble in general.

In fact of course, this effortless motion of a body is not what we observe. Due to the small
dissipation present even at when Re > 1 work must be done to keep a body in motion. And
inevitably, vorticity is injected into the fluid, by the process of vortex shedding The shedding of
vorticity is enhanced at sharp edges, hence the organelles we see in Nature such as wings and fins.

The Intermediate realm is of interest as a zone of transition between the Stokesian and Eulerian
locomoters. It is a regime where one can attempt to understand how Eulerian principles might have
developed out of the Stokesian realm as size increased (given that life starts small, hence at low
Re). In the table above I listed a pteropod, which is a small marine mollusc. The pteropod Clione
antarctica, in its juvenile stage, is about 4 mm long and has three bands of cilia encircling a tube-like
body. It is thus able to swim as a ciliate in the Stokesian realm. But it also possesses two small wings



which it can extend and flap like a bird. These organelles are thus suitable for Eulerian swimming.
The transition from one to the other has been studied as the size of the pteropods increased, and
the increase of utility of wings relative to cilia observed. One of the problems we shall look at is
how Eulerian locomotion can be viewed as arising from a mathematical bifurcation with respect to
frequency Reynolds number, a bifurcation which occurs in the Intermediate realm.

Note: Some films illustrating this bifurcation in a numerical experiment were shown in the class.
Anyone not present then who would like to see them should contact me.



