Some remarks on finding expansions of periodic solutions
and fundamental solution matrices for Mathieu’s equation

Mathieu’s equation can be uses as an example of finding solutions with are periodic with the same
period as the coefficient. Consider the equation in the form

2z + (@ + bcos2t)z = 0.

We can try to find values of a,b for which periodic solutions with period 7 exist. To illustrate this in
a perturbative scheme consider the special case a = 4n? + v(€),b = €, n an integer. Solutions can be
represented as power series in €, of the form

2(t) = 20(t) + ex1(t) + E€22(t) + ...
In general, to find a periodic solution we must allow v to have a power series at our disposal, with vy = 0:
() = y1e+ Y€ + ...
The equations for the term in sequence are
20 +4n*z =0
2 +4n?z = —vy129 — cos 2t zg
2 +4n%2) = —y121 — Y220 — COS 2t 21

and so on. To illustrate the procedure consider the case n = 1 Suppose we look for a solution satisfying
2(0) = 1,2'(0) = 0. Then the intitial conditions determine zg = cos2t, and

2! 4+ 42, = —71 cos 2t — cos® 2t 2

The last term generates the particular solution —% + 21—4 cos4t, and the term with v, generates the particular
solution —*tsin2t. This is a resonance term which will not allow the solution to be periodic. Hence we
must set y; = 0. To satisfy the appropriate conditions z;(0) = 2;,(0) = 0,k > 1 we then must add a solution

of the homogeneous equation, to obtain

L + 1 cos4t + L cos 2t
21 =—=4+ = — .
T T 12

In a similar way we solve for zs but now 2 must be chosen non-zero to remove the possibility of resonance
terms. We find

_ 9 —_1+ 1 cos4dt + ! cos 6t + 29 cos 2t
TT R 2T 96 T 12244 32.48 4896 '

Note that this solution is even in t. We can similarly find periodic solutions odd in ¢, satisfying z(0) =
0,2'(0) = 1, with the expansions
2
= —%eQ +...,2= %sith—ke[% sin 4t — 2—145in2t] + ;_6[3% sin 6t — %sin4t—|— %sith] +....
Since v has a different variation with € for these two solutions, only one periodic solution obtains for
any given value of €. For any given equation of this form a second linearly independent solution can be found
by variation of parameters, or perturbatively by the process just described, but now with the prescribed
~(€). As we have seen, without control over v we will introduce resonance terms, and the solution will not
be periodic. You can check that this is just an example of case (iii) for Hill’s equation, wherein the the
descriminant is 0 and we cannot decide boundedness (here periodicity) without additional knowledge about
the equation.
That is, if were look for a fundamental solution matrix Z such that Z(0) = I, and we stipulate that
v= 26 +..., then Z = [{1) 2®] where z(1) is the first solution computed above. However z(?) differs
from the second solution above in that there is now a resonance term. We find

11 1 11 91
22 = %[— sin 6t — — sin4t + Itcos2t - %sin%].

32 6
The resonance term is then responsible for the non-diagonal term z( (r) in Q:
1 A 117e?
Zm=0= (0 1)’ ~ 384

This is an instance of case (iii) for Hill’s equation; { is easily brought into Jordan Normal Form .



