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Stokesian locomotion

We turn to the locomotion of bodies as small Reynolds numbers, the fluid
dynamics being that of the Stokes equations (??). Assuming constant den-
sity and viscosity, these equations are

∇p− µ∇2u = 0, ∇ · u = 0. (2.1)

Having dropped completely the inertia of the fluid, including the linear
time derivative, we pass to a world where dynamical equilibration is in-
stantaneous. In the familiar Newtonian world, an imposed force accelerates
a body, and the change of velocity requires a finite time. As inertia tends
to zero, the response becomes instantaneous and the viscous and pressure
forces must be in dynamic equilibrium at every instant.

Formally, the Stokesian realm is the limit of Navier-Stokes theory for
small Reynolds number Re = UL/ν, it being understood that time scales
of the flow are of order L/U . In the natural setting small Reynolds number
occurs because of small size, typically microorganisms and tiny insects.
Since body densities in these settings are not to far different from the fluid
density, body inertia is also negligible. Thus the system of fluid and body
comprising the domain of locomotion is one of negligible inertia, and we
shall always include the body within the Stokesian approximation.

The most dramatic result of this equilibrium is that, for free swimming
in the Stokesian realm, and without any external force such as gravity, the
force exerted by the fluid on the body is identically zero at each instant
of time. For, a non-zero force cannot be balanced by any inertial response
of the body. Conversely, the force exerted on the fluid by a free Stokesian
swimmer is identically zero. The Stokesian realm emphasizes the fundamen-
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tal distinction between the forces on body and fluid, and the locomotion of
the body relative to the fluid.

Although formally the time variable has disappeared from the equations
of motion, time does linger here as a parameter. That is, time is needed as
a label for the state of the Stokesian system as determined by the instan-
taneous geometry and boundary conditions. In locomotion, our concern is
usually the exterior of a three-dimensional deformable body. As the body
deforms, we may speak of sequence of body configurations and Stokes flows
determined by the instantaneous body motion. Thus the time now serves
as a parameter attached to this sequence of configurations.

In the present chapter we shall examine some properties of the Stokes
equations and then develop several theories for locomotion in the Stokesian
realm.

2.1 The exterior problem for the Stokes equations

To study a locomoting body in the Stokesian realm we need to solve the
Stokes equations with the velocity given on the instantaneous body surface
S.

u|S = uS(x), (2.2)

together with the condition that the velocity vanish at infinity,

u∞ = 0. (2.3)

It is known that for sufficiently smooth S and us there exists a unique
solution to this problem, see e.g. [8]. This solution can be given explicitly
only in a few simple cases, for example for the classical problem of Stokes
of uniform flow past a sphere. Other examples are given in [7].

The uniqueness of the solution is important for understanding the me-
chanics of Stokesian locomotion. Essential here is the linearity of the Stokes
equation. The difference v of two solutions then satisfies the Stokes equa-
tions with vS = 0. The dot product v · (∇p − µ lapv), when integrated
over the region between the body and a large sphere of radius R, yields a
vanishing contribution on S, and a vanishing contribution on the distant
sphere provided that v and p decay sufficiently fast. It is sufficient in three
dimensions that v = O(r−1,∇v = O(r−2), and p = O(r−2), which are
obtained by solutions. We are thus left with an integral of

(
∂vi

∂xj

)2 over the
exterior regions equal to zero. This implies v = constant = 0.

To see something of the structure of exterior solutions of the Stokes equa-
tions, we consider first a simple potential field u = ∇φ, which is solenoidal
provided that ∇2φ = 0, i.e φ is a harmonic function of x. This field is
clearly the velocity field of a Stokes flow with a constant pressure. Note
that although the viscous force vanishes identically in such a Stokes flow,
viscous stresses are non-zero.
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A richer class of solutions have a velocity field in the component form

ui = [
∂2χ

∂xi∂xj
−∇2χδij]aj (2.4)

where a is a constant vector. The corresponding pressure will be

p = µ
∂∇2χ

∂xj
aj. (2.5)

Note that the form of u insures that it is divergence-free, and that the
pressure is in equilibrium with the viscous force associated with the first
term on the right of (2.4). The Stokes equations are thus satisfied by (2.4)
and (2.5) provided that

∇4χ = 0, (2.6)

i.e. if χ is a biharmonic function. A large class of solutions relevant to the
exterior problem can thus be found by separation of variables, for example,
in spherical polar coordinates. As an example, we give the classical solution
of Stokes for flow of a fluid with velocity (U, 0, 0) past a solid sphere of
radius r0 on which the non-slip condition is satisfied. The velocity field is
a linear combination of (2.4) with χ = r and a potential field with dipole
potential:

u = U i +A(xrr−3 + r−1i) + B∇(xr−3). (2.7)

We see that u = 0 on r = r0 provided that A = −3
4r0U,B = −1

4r
3
0U . Note

that as a generalized function ∇4r = −8πδ(x). Thus the field (2.4) within
χ = r is the velocity caused by a point force of strength −8πµa acting at
the origin. From the value of A and the fact that the harmonic dipole will
not contribute to the point force we conclude that the drag acting upon
the sphere is 8πµ× 3

4r0U = 6πr0Uµ, which is the famous result of Stokes.
As a third and final class of solutions, we consider

u = ∇ψ × b, (2.8)

where b is a constant vector. This is a Stokes solution with constant a
pressure provided that ψ is harmonic. As an example, when ψ = r30r

−1

(2.8) gives the flow due to a sphere of radius r0 spinning with angular
velocity b.

Given the above special solutions, the question naturally arises as what
family of solutions is sufficient to represent by superposition any solution
of the exterior boundary-value problem. We discuss this issue now, by sup-
posing that the unique solution is known from the body surface out to some
sphere S0 which contains the body. We are assured that if we can construct
a solution of the Stokes equations exterior to S0, such that the necessary
values are assumed by the solution on S0, then this constructed solution
must agree with the original solution extended in the exterior of S0. Thus
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it is sufficient to solve the exterior problem for a sphere to ensure that we
have a complete set of Stokes solutions.

Suppose now that u is divergence-free in the exterior V0 of S0, and let
r = (x2 + y2 + z2)1/2 be the distance to the origin from a point in V0,
r = r0 being S0. We first show that two such fields with the same values
of r · u and r · (∇ × u) on every spherical surface r = r1 ≥ r0, must
agree throughout V0. 1 Indeed, if u is divergence-free and r · u = rur = 0,
(ur, uθ, uφ) being the velocity in spherical polar coordinates r, θ, φ, then
the formula for divergence gives

∂ sin θuθ

∂θ
+
∂uφ

∂φ
= 0. (2.9)

If also r · (∇× u) = 0 in V0, then

∂ sin θuφ

∂θ
− ∂uθ

∂φ
= 0. (2.10)

Combining the last two equations, we see that

L2[uθ, uφ] = 0, L2u =
∂

∂θ

[
sin θ

(∂(sin θu)
∂θ

)]
+
∂2u

∂φ2
. (2.11)

Multiplying −L2uφ = 0 by uφ and integrating over a sphere r = r1 ≥ r0
we obtain a positive definite quadratic implying uφ = 0 everywhere in V0,
and similarly for uθ. Thus u = 0 throughout V0.

We now represent u in the form

u = ∇× (∇× rP ) + ∇× rT, (2.12)

involving the scalar functions P, T , and note that

r · u = −Λ2P, r · (∇× u) = −Λ2T, (2.13)

where

Λ2 =
∂2

∂θ2
+ cot θ

∂

∂θ
+

1
sin2 θ

∂2

∂φ2
. (2.14)

Thus if P, T can be found so that (2.13) are satisfied for the given u, we
know that any divergence-free velocity field can be represented in the form
a(2.12).

To show that this is the case, we must consider the invertibility of the
operator Λ2. A suitable space of functions is the Hilbert space of com-
plex scalar fields defined on the rectangle R : 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π

1Here and throughout our work the necessary smoothness is assumed for all
differentiations used. Any special considerations of regularity which are essential
to the discussion will be dealt with explicitly as they arise.
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and periodic with period 2π in φ, with inner product given by (f, g) =∫
R
f∗g sin θdθdφ. Now Λ2 is easily seen to be self-adjoint on this space, and

to have eigenvalue 0 corresponding to a constant eigenfunction. Extended
to all of V0, this amounts to an eigenfunction which is an arbitrary function
of r ≥ r0. It then follows that P, T are uniquely determined by (2.13) in V0

provided that
∫

R

[r · u, r · (∇× u)] sin θdθdφ = [0, 0]. (2.15)

This is always the case provided fluid mass is not being added within S0,
e.g. if the body has fixed volume or if volume changes by adsorption of
fluid. 2

We thus have shown that u generally has the decomposition (2.12), and
in particular this is true for Stokes flows solving our exterior problem. Since
then

∇2u = ∇∇2(r
∂P

∂r
− P )− r∇4P + ∇(∇2T ) × r, (2.16)

we see that Stokes flows with velocity (2.12) require a pressure given by

p = µ∇2(r
∂P

∂r
− P ) (2.17)

and that P and T satisfy

∇4P = 0,∇2T = 0. (2.18)

We remark that it can be shown that any decomposition (2.12) can be
built up from solutions of the form (2.4) and (2.8), see problem 2.1 below.

2.1.1 Solutions with symmetry

In special cases indicated by symmetry or a particular coordinate system,
the derivation solutions of the Stokes equations can be derived from a single
scalar streamfunction. We illustrate this by deriving the uniform Stokes flow
past a sphere using spherical polar coordinates for u = (ur, uθ, uφ) with
uφ = 0 and the flow invariant in φ. In this case the Stokes equations take
the form

∂p

∂r
− µ

(
∇2ur −

2ur

r2
− 2
r2 sin θ

∂(uθ sin θ)
∂θ

)
= 0, (2.19)

1
r

∂p

∂θ
− µ

(
∇2uθ +

2
r2
∂ur

∂θ
− uθ

r2 sin2 θ

)
= 0, (2.20)

2We remark that the decomposition (2.12) is usually referred to as a poloidal
(P), toroidal (T) decomposition of a divergence-free field. It is particularly useful
in spherical domains, and has been widely applied in the modeling of magnetic
and velocity field of spherical bodies such as planets and stars, see e.g. [13], [1].
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1
r2
∂(r2ur)
∂r

+
1

r sin θ
∂(sin θuθ)

∂θ
= 0, (2.21)

∇2Q =
1
r2

∂

∂r

(
r2
∂Q

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂Q

∂θ

)
= 0. (2.22)

We may satisfy the solenoidal condition (2.21) using the Stokes stream-
function Ψ , defined by

ur =
1

r2 sin θ
∂Ψ
∂θ

, uθ = − 1
r sin θ

∂Ψ
∂r

. (2.23)

Eliminating pressure from (2.19) and (2.20) and using (2.23) we obtain a
fourth-order equation for Ψ. However the easiest way to get the result is
to take the curl of the primitive Stokes equations, recognizing that for the
symmetry of the flow leaves on the φ component of vorticity. The we have

∇2ωφ − ωφ

r2 sin2 θ
= 0, ωφ =

1
r

∂(ruθ)
∂r

− 1
r

∂ur

∂θ
. (2.24)

Now using (2.23) we get

ωφ = − 1
r sin θ

L2Ψ, L2Q ≡
[ ∂2

∂r2
+

sin θ
r2

∂

∂θ

( 1
sin θ

∂

∂θ

)]
Q. (2.25)

Using this result in (2.24) and employing (2.22) we arrive at

L2(L2Ψ) = 0. (2.26)

For steady Stokes flow past a sphere of radius a we have the boundary
conditions

Ψθ(a, θ) = 0,Ψr(a, θ) = 0,Ψ → 1
2

sin2 θr2, r → ∞, (2.27)

where U i is the velocity of the free stream.
We thus set Ψ = f(r) sin2 θ to obtain

( d2

dr2
− 2
r2

)( d2

dr2
− 2
r2

)
f = 0. (2.28)

From the trial solution f = rn we see that f = A/r + Br + Cr2 + Dr4.
From our conditions (2.27) we see that D = 0 and C = 1

2U , and then that
B = 3

4r0U,A = 1
4r

3
0U . This gives us the Stokes streamfunction

Ψ =
(1
2
Ur2 +

1
4
Ur30r

−1 − 3
4
r0Ur

)
sin2 θ. (2.29)
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2.2 Calculation of force, torque, and rate of
working

From the solution of the exterior problem we may compute the force and
torque acting on the boundary S, and the instantaneous rate of viscous
dissipation, equal to the instantaneous rate of working of S on the sur-
rounding fluid (see problem 2.2). Now the local conservation of momentum
and of angular momentum may be expressed in terms of the stress tensor
σ as

∂σij

∂xj
= 0,

∂(εijkxjσkl)
∂xl

= 0, (2.30)

where σij = −pδij + ν
(

∂ui

∂xj
+ ∂uj

∂xi

)
. The force and torque exerted by the

fluid on the body are

Fi =
∫

S

σijnjdS, Ti =
∫

S

εijkxjσklnldS, (2.31)

where n is the outward normal to the body.
The rate of working of the surface on the fluid is equal to the dot product

of surface velocity uS and force on fluid, integrated over the body surface,

W = −
∫

S

uSiσijnjdS. (2.32)

As an example, consider the rate of working per unit area of sheet for
the stretching swimming sheet. From (??) and (??) we see that, to leading
order,

W ≈ −〈µ∂u1

∂y
(x, 0, t)aω sin (kx− ωt)〉 = µka2ω2. (2.33)

2.3 Locomotion

The essential feature of Stokesian locomotion that allows a rather complete
analysis is the linearity of the fluid equations. This allows us write the
complete flow as a sum of contributions each of which accommodates a
portion of the physics. Suppose we are dealing with a deformable finite body
in three dimensions with a prescribed standard shape. We can consider the
flow set up in the standard frame, and the resulting force F1(t) and torque
T1(t) exerted on the fluid by the body. These quantities may be computed
at each instant from the uniquely defined Stokes flows existing at that
instant.

Next we consider the force and torque generated by a rigid body mo-
tion. If the instantaneous translational velocity and angular velocity of the
standard frame are U(t) and Ω(t) respectively, then by the linearity there
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are non-singular matrices A(t),B(t), determined by the standard shape at
time t, such that F2(t) = A ·U(t) is the force exerted on the fluid by virtue
of its translation, and T2)t) = B · Ω(t) is the torque exerted on the fluid
due to body spin. 3

If the body is composed of a density comparable to that of the fluid,
then the Stokes approximation applies to both fluid and body, so that
inertial effects are negligible in both. In that case F1(t) + F2(t) = 0 and
T1(t) +T2(t) = 0. These expressions may be regarded as equations for the
instantaneous values of U and Ω, provided that the Stokes flows are all
known. Thus the locomotion of the body can in principle be determined
from the evolution of the standard shape.

If gravity is present, a third component of the motion comes from gravita-
tional force and torque. In Stokes flow, the buoyancy force g(Mbody−ρVbody

will be balanced by a viscous drift force of order µLUdrift. The drift ve-
locity will be negligible compared to the characteristic locomotion speed
U provided that (rM − 1)Re/Fr2 � 1. For microorganisms the density
contrast rM − 1 is usually only a few percent, which tends to make grav-
ity effect negligible in bacteria and spermatozoa, but non-negligible in the
ciliated protozoa. The phenomenon of bioconvection is a gravity-mediated
aspect of locomotion in some ciliates, see section ??.

2.4 Time-reversal symmetry, and the scallop
theorem

Relative to the standard frame, the standard shape of a Stokesian locomoter
can be thought of a path in certain space of configurations. That is, the
instantaneous standard shape represented as a point in a configuration
space, and the movements of the body as a line through this space. A
periodic movement is a closed loop in the space.

Since time is a parameter in Stokes flow, the time at which a given config-
uration is assumed is a convenient parameter for the configuration path. At
each time, there is a surface velocity associated with the instantaneous body
movement in the standard frame, and there is an instantaneous, unique
rigid body motion with make the net force and moment zero. In particular
there is an instantaneous translational velocity ((̇X), Ẏ , Ż).

We are interested in cases of motion in the standard frame in which
steady locomotion is not possible. We shall assume that the standard move-
ment is periodic with period T , so that the configuration path is closed.
Suppose now that the path P in configuration space is indistinguishable
from the path P ′ which results from the replacement of t by −t, in other

3The non-singular property of A or B follows from the fact that any rigid
body motion produces non-trivial viscous dissipation.
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words from the sequence of configurations obtained by running the pa-
rameter clock backwards. We call such a periodic movement a reciprocal
movement.

To take a discrete case, if P = ABCDEFGA, P ′ = AGFEDCBA and
P = P ′ if and only if P = ABCDDCBA. For continuous movements, a
reciprocal path must go from the starting configuration, A say, along a
curve C connecting A to an intermediate configuration B 6= A, then back
along the curve −C from B to A. We might say that a reciprocal movement
may be characterized as a union of degenerate oriented loops segments such
as AB in Figure 2.1(a), which are “twice covered” and hence invariant
under time reversal. A non-reciprocal movement will be non-degenerate
in the sense that some component will be “once-covered” and hence not
invariant under time reversal. To identify non-reciprocity it suffices to show
the existence of a once-covered segment on some low-dimensional projection
of the configuration space.

For example, consider the stretched plane sheet, with xB(x, t) = x +
a cos(kx− ωt). Consider the 2D con figuration space consisting of

c1(t) = xB(0, t) = a cosωt, c2 = xB(π/(2k), t) = π/(2k) sinωt. (2.34)

This 2D projection of the configuration space (fully determined by the
movements of the points 0 ≤ x < 2π say) yields an oriented circle, so that
the motion of the sheet is non-reciprocal. The impications of time-reversal
symmetry should be carefully considered in the light of this example.It
is not simply a matter of material orbits of boundary points being indis-
tinguishable from their time reversals. That occurs in the above example,
where the relative phase of distinct boundary points must be invoked to
see that the movement is not reciprocal. In a sense one must consider the
entire collection of boundary points in tracking the time evolution of the
body configuration.

Figure 2.1: Movements which are (a)reciprocal and (b) non-reciprocal in
a 2D configurations space of parameters c1, c2.
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We now state a fundamental result of Stokesian locomotion: If the stan-
dard movement of a periodic Stokesian locomoter is reciprocal, steady lo-
comotion with non-zero velocity is not possible. This might be termed
the reciprocal theorem, but it is usually called the scallop theorem, see the
delightful lecture of Purcell [12].

The proof of the scallop theorem depends on linearity and the reversal of
the sign of velocity under time reversal. This is true for the standard shape,
as well as for the current shape since there is a one-one correspondence of
the rigid-body motion and the standard velocity. Over a given period it
follows that, if the translational displacement of the body over one period is
∆X, the displacement over one period with time-reversed motion is −∆X.
If the motion is reciprocal, the two movements are indistinguishable, so
that ∆X = −∆X, so there is not displacement.

Note that we are dealing here only with net displacements over one pe-
riod. In general a body will move during the cycle, as in the back and forth
movement of a scallop shell when trying to swim in the Stokesian realm.

Note also that the scallop theorem does not say that a non-reciprocal
movement necessarily results in locomotion. Indeed it is easy to come up
with counter-examples, where two components of the movement are each
non-reciprocal, but their effects cancel (e.g. two flagella acting on a cell
body from opposite directions).

We remark that there are generalizations of the scallop theorem which
depend upon symmetries of the Stokes equations. For example, the mirror
image of a Stokes for is a Stokes flow. As a consequence, if the mirror image
of a body movement is indistinguishable from the time reversed movement,
Stokesian swimming is impossible. An example of this would be a rigid
stalk pivoting about one end and sweeping a circular conical surface.

2.5 Efficiency of Stokesian locomotion

Consider a neutrally buoyant body in steady locomotion with mean velocity
U. With respect to an observer moving with the velocity U, the fluid
velocity exterior to the body may be decomposed as follows:

u = −U + u1 + u2, (2.35)

where u1 is the Stokes flow vanishing at ∞ and equal to U on the instan-
taneous body surface, and u2 also vanishes at ∞ and is equal to one the
body surface to the instantaneous body velocity uB. Note that the motion
of the body surface relative to the observed in uniform motion is in general
not that observed in the standard frame. This is because the translational
velocity of the body is in general a function of time with time average U.

The force exerted on the fluid by the body movements is

F2(t) = −
∫
σ2 · ndS, (2.36)
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the integral being over the instantaneous body surface with outward normal
n. This force satisfies F2(t) = −F1(t), where F1 is the force exerted by the
instantaneous body surface being moved with velocity U.

We now define the efficiency η of locomotion as the time average of the
rate of working of F2 during locomotion, divided by the time average of
the total viscous dissipation of the flow,

η =
〈F2 ·U〉

〈Φ〉 =
〈F2〉 ·U

〈Φ〉 =
−〈F1〉 ·U

〈Φ〉 , (2.37)

where 〈·〉 denotes time average and Φ is the dissipation of u1 + u2. But

〈F1〉 ·U = 〈
∫

U · σ1 ·ndS〉 = 〈
∫

u1 · σ1 · ndS〉 (2.38)

Taking into account the normal is outward from the body, we see that

〈F1〉 ·U = −〈Φ11〉, (2.39)

where we write

Φkl =
µ

2

∫ (∂uki

∂xj
+
∂ukj

∂xi

)(∂uli

∂xj
+
∂ulj

∂xi

)
dV, (2.40)

taken over the exterior domain. We may show in a similar way, using F1 +
F2 = 0, that

〈Φ21〉 = −〈Φ11〉. (2.41)

Thus we have

η =
〈Φ11〉

〈Φ11 + 2Φ12 + Φ22〉
=

〈Φ11〉
〈Φ22〉 − 〈Φ11〉

. (2.42)

2.6 The general half-plane problem: the swimming
of a sheet reconsidered

The problem of a swimming sheet may be generalized to allow the sheet to
both undulate in the y direction, and it so doing to stretch slightly, but also
to directly stretch along its surface. Accordingly we consider the boundary
motion

xB = x+ a cos(kx− ωt − φ)

= x+ β cos ξ + γ sin ξ, ξ = kx− ωt, (2.43)

yB = b sin ξ, (2.44)

where β = a cos φ, γ = a sinφ. The analysis proceeds exactly as for the
stretched, planar sheet, using the modified boundary conditions at the
sheet:

u(xB, yB , t) = aω sin(ξ − φ) (2.45)
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v(xB , yB, t) = −bω cos ξ. (2.46)

For small ak, bk, the first two terms in the expansion of the streamfunction
(with xi = kx− ωtband η = ky ) are found to be

ψ1 =
ω

k
[(b+ bη + βη)e−η sin ξ − γηe−η cos ξ], (2.47)

ψ2 = Uy − ω

2
ηe−2η[2γ(b+ β) sin 2ξ + (b+ β + γ(b+ β − γ) cos 2ξ]. (2.48)

Here leading term U2 of the expansion of the swimming speed is again of
order (ak)2 ∼ (bk)2, and is given by

U/V =
1
2
k2(b2 + 2ab cosφ− a2), V = ω/k. (2.49)

Note that the direction of swimming opposed to the phase velocity of the
wave when a = 0, but as we have seen is in the direction of the wave when
b = 0. This is a consequence of the differing effect on the fluid of undulating
as opposed tangential movements. We shall see the same phenomena in
locomotion by waving flagella, where the effect is direction of swimming
relative to the phase speed is determined by the relative resistance of the
flagellum to movements along its axis as opposed to normal to its axis.

We may interpret the swimming as an average property of the sheet’s
waviness. If the fluid were initially at rest and the waves were started, the
flow would build up with time until a bulk motion of the fluid “at infinity”
had developed. A precise mechanical desription of the origin of this bulk
motion is difficult to give because it is a second-order effect. Intuitively, it
is not surprising that bulk motion can be developed in a viscous fluid, but
even its directiion is difficulty to predict from the sheet’s parameters.

2.6.1 Other results

The pressure field corresponding to ψ may be found from the formula

∂p

∂x
= µ∇2 ∂ψ

∂y
, (2.50)

because the right-hand side is periodic in x with zero mean. To leading
order we find,

p1 = −2µωke−η[(b+ β) cos ξ + γ sin ξ]. (2.51)

Despite the fact that the sheet does not swim to leading order, the effort
or mechanical work done by the sheet while swimming can be computed
from the leading terms. The work done by the sheet, per unit horizontal
projected area, is

Ws = −〈u(xB, yB , t)(σ11n1+σ12n2)+v(xB, yB , t)(σ21n1+σ22n2)〉, (2.52)
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where n1(x, t), n2(x, t) is the upward normal vector from the sheet,

n1 = −∆(1 + δ2)−1/2, n2 = (1 + ∆)−1/2,∆ =
dyB

dx
= bk cos ξ, (2.53)

and

σ =
(

−p+ 2µψxy µ(ψyy − Ψxx

µ(ψyy − Ψxx −p− µψxy

)
. (2.54)

From these expressions we may calculate

Ws = µω2k(a2 + b2). (2.55)

This value is to be doubled if both sides of the sheet are considered.
Some other quantities of interest in applications of the swimming sheet

are the constant fluxes of mass and momentum associated with its move-
ments. let fm, fx, fy denote fluxes of mass and (x, y) momentum. Then

fm = −〈ψ(x, yB , t)− UyB〉

∼ −〈ψ1(x, yB, t)〉 = −1
2
βb. (2.56)

Similarly, using (2.54) we have

fx = 〈
∫ ∞

yB

σ11dy〉 = −2µωkγb, (2.57)

fy = 〈
∫ ∞

yB

σ21dy〉 = µωkβb. (2.58)

These fluxes can affect the flow field whenever the parameters of the sheet
are slowly modulated in space, see the macroscopic model of section ??.

Finally, wegive the finite Reynolds number result for U in the case a = 0,
obtained exactly as for the case b = 0.

U/V =
b2k2

4

(
1 +

1
F

)
. (2.59)

Thus in this case the speed is decreased by one-half as the Reynolds number
increases from zero to infinity.

2.6.2 Inextensibility

In [14] G.I. Taylor actually focuses on the case b = 0 with the sheet assumed
to be inextensible, i.e to preserve arc length during its motion. Relative to
the stationary frame in which the points of the sheet are seen to execute
periodic orbits, assume that the phase velocity of the wave is positive, so
the wave move to the right. Changed now to a moving frame, moving with
the phase velocity of with wave, the standing wave of crests and troughs
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is seen to be fixed in space, but material points on the sheet are observed
to be moving to the left. Moreover, the sheet being inextensible, the speed
of this motion of material points within the sheet must be the same for all
points, equal say to Q. During the time the stationary observed sees one
wave length of the wave pass by, material points must move along the full
arc length of one wavelength of the surface. Thus

Q =
V × arc length of one wavelength of sheet

one wavelength of wave
, (2.60)

and so,

Q =
ω

2πk

∫ 2π

0

(1 + b2k2 cos2 ξ)dξ. (2.61)

The stationary observed thus sees the boundary velocity

u(xB, yB , t) = −Q cos θ + V, v(xB , yB , t) = −Q sin θ, (2.62)

where tan θ = dyb/dx = bk cos ξ. Substituting (2.61) and expanding, we
get

u(xB, yB, t) =
ωb2k

4
cos 2ξ + O(b4k4), (2.63)

v(xB , yB, t) = −bω cos ξ + O(b3k3). (2.64)

For small bk a material is seen by the stationary observer to have Lagrange
coordinates

(xB, yB) = (x− 1
8
b2k sin 2ξ, b sin ξ). (2.65)

This shows that material points execute small figure eights relative to the
stationary observer. It follows also from this that the sheet movement is
non-reciprocal.

Taylor carried his calculation of U with inextensibility assumed to order
b4k4 , finding

U/V =
1
2
b2k2(1 − 19

16
b2k2) +O(b6k6). (2.66)

2.7 Flagellar locomotion

Although the swimming sheet will provide a useful model of ciliary propul-
sion (see ??), it is not in itself representative of a natural organelle for low
Reynolds number locomotion. By far the most common strategy seen in
nature is to utilize long slender organelles, such as cilia, flagella, and rigid
stalks as the building material for a locomoting body. We shall attempt in
this section to understand the usefulness of this body geometry from the
mechanical principles of Stokesian fluid dynamics.
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2.7.1 Approximate theory for a thin stalk

Since a long slender filament in Stokes flow can presumably apply force
to the fluid, forces necessarily concentrated near a curve, it is tempting
to represent its hydrodynamical effect in terms of a distribution of tensor
Stokeslets,

Sij(x, y, z) =
1

8πµ

(xixj

r3
+

1
r
δij

)
. (2.67)

Let us consider for simplicity a straight stalk whose axis lies along the
segment −L1 ≤ z ≤ L2 of the z-axis, and let the boundary of the stalk be
the cylinder x2 + y2 = a2,−L1 ≤ z ≤ L2. We assume that a � L1 + L2.

Our object now is a see what surface velocities result from a given distri-
bution of forces along the axis of the stalk, and try to adjust the forces so
that the surface velocity amounts to a rigid-body motion of the stalk. If we
succeed, the superposition of Stokeslets represents the Stokes flow created
by the motion of the stalk.

Let ft(ζ)δ(x)δ(yδ(z − ζ) be the tangential force at the axis of the stalk,
and fn(ζ)δ(x)δ(yδ(z−ζ) be the force normal to the stalk, both at the point
z = ζ. Here ft = (fz(ζ), 0, 0) and fn = (fx(ζ), fy(ζ), 0). We seek to evaluate
in the neighborhood of the stalk surface the integrals

(ut,un =
∫ L2

−L1

S(x, y, z − ζ) · (ft, fn)dζ (2.68)

We will show, following Lighthill [17] that a useful approximate theory can
be developed by first taking the force distribution as a constant.

We note the following indefinite integrals:
∫ (z2

r3
+

1
r

)
dz = −z/r + 2 log(z + r), (2.69)

∫
z(x, y)/r3dx = −(x, y)/r. (2.70)

Thus if ft 6= 0 were independent of ζ, we would have

8πµf−1
z wt =

∫ L2

−L1

(z − ζ)2

(x2 + y2 + (z − ζ)2)3/2
+

1
(x2 + y2 + (z − ζ)2)1/2

dζ

=
(z − L2)

(x2 + y2 + (z − L2)2)1/2
− (z + L1)

(x2 + y2 + (z + L1)2)1/2

−2 log
(z − L2 +

√
x2 + y2 + (z − L2)2

z + L1 +
√
x2 + y2 + (z + L1)2

)
(2.71)

These terms not involving the logarithm have an interesting structure when
z2 + y2 = a2 and z varies from −L1 to L2. We show graphs in Figure 2.2
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Figure 2.2: The terms in wt for the case L1 = 2, L2 = 3, a = .1. The
dotted line is 2 log(2400).

The logarithmic terms clearly are not well approximated by a constant,
but that is nevertheless the approximation usually made. In fact the dom-
inant terms in the expansion for small a2 where z is bounded away from
the endpoints of the stalk are adopted:

wt = fz
1

4πµ

[
log

(4L1L2

a2

)
− 1

]
fz +O(a2L−2), L = (L1L2)1/2. (2.72)

We also have on x2 + y2 = a2,

8πµf−1
z (ut, vt) = (x, y)[(a2 + (z − L2)2)−1 − (a2 + (z + L1)2)−1]. (2.73)

Thus, away from the endpoints we have (ut, vt) = O(a/L). Thus, in leading
terms

ut =
1

4πµ

[
log

(4L1L2

a2

)
− 1

]
+ ft + O(a/L). (2.74)

Consider now the effect of the x-directed point forces. Again assuming
fx is independent of ζ. The resulting velocity is

8πµf−1
x un =

∫ L2

−L1

(2x2 + y2 + (z − ζ)2, xy, x(z − ζ))
(x2 + y2 + (z − ζ)2)3/2

dζ. (2.75)

We now need to use, in addition to (2.69), (2.70)
∫
r−3dz =

z

(x2 + y2)r
, (2.76)

∫
r−5dz =

z

3a2r3
+

2z
3a4r

. (2.77)

We then find, away from endpoints, that on x2 + y2 = z2 we have

8πµf−1
x un = (

2x2

a2
+ log

4L1L2

a2
,
2xy
a2

, 0) +O(a/L). (2.78)
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The terms here in x2 and xy are formally O(1) and need to be dealt with.
We therefore consider a potential flow contribution to the Stokes flow, given
by dipole velocity ∇(x/r3). The velocity field for this dipole is

(r−3 − 3x2r−5,−3xyr−5,−3xzr−5). (2.79)

If we assume a uniform distribution of strength g over the stalk, the result-
ing flow, when evaluated on the stalk, takes the form

ug = g
( 2
a2

− 4x2

a4
,
−4xy
a4

, 0) + O(a/L). (2.80)

Now choosing g = a2

16πµ
and combining the two fields, we obtain a composite

un given by

un =
1

8πµ

[
log

(4L1L2

a2

)
+ 1

]
fn +O(a/L), (2.81)

where we now include the contribution of fy as obtained by a parallel
computation.

We can turn the relation between force and velocity around, and view
(2.74) and (2.81) as relations defining a resistance to motion of the stalk
in the tangential and normal directions respectively. Strictly speaking the
resistance so calculated is exact only in the limit of zero a, and the logarith-
mic terms are such as to make the expressions convergence very slowly to
this limit. Nevertheless, these results have led to the use of an approximate
way of studying the resistance of a slender, flexible flagellum of arbitrary
shape to tangential and normal movements. The idea is to introduce tan-
gential and normal resistance coefficients KT ,KN , so that utKT ∆s and
unKN ∆s are respectively the tangential and normal forces exerted on the
fluid by a small segment of flagellum of length ∆s, in motion through the
fluid with tangential and normal velocity ut, un. If a is the radius of the
cross section of the flagellum, then the force is intended to be calculated
for a slender object, so necessarily ∆s� a.

In first glance it would seem that we have already, in (2.74) and (2.81), a
nice approximate derivation ofKT ,KN . Note that (2.74) and (2.81) suggest
that , because of critical factor of 2, when the logarithm dominates we
can expect KN to be about twice KT . In practice the factor is smaller,
but KN/KT may be safely assumed to exceed 1 for any slender smooth
flagellum. However there is a basic problem in the use of these formulas.
The expressions involve the product bc, and it is unclear what value should
be assigned to this constant. Various ways of dealing with this calibration
problem have been proposed, and we will return to it when we take up
the more formal theory in section ??. For now we simply adopt the the
very useful premise that suitable KT ,KN can be found, and proceed to
construct a theory of flagellar propulsion. We shall see later that in fact a
purely local theory of flagellar resistance is not mathematically tenable, so
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the method is leads to a simple, transparent model rather than an exact
asymptotic formulation.

2.7.2 Gray-Hancock theory of flagellar propulsion

This theory studies the motion of a flagellum idealized as a curve in space
whose motion through the fluid leads to forces derivable from resistance
coefficients. The theory, due to Gray and Hancock [19], is is a resistive
force theory.

We represent the instantaneous position of the flagellum in terms of its
arc length,

r = (x, y, z) = R(s) =
(
X(s), Y (s), Z(s)

)
. (2.82)

Then dR/ds = t is the local tangent vector in the direction of increasing
s. We assume the wave form to be periodic and the motion to be along the
x-axis, so that there are constants Λ, λ such that

X(s + Λ) = X(s) + λ, Y (s + Λ) = Y (s), Z(s + Λ)) = Z(s). (2.83)

Thus Λ is the distance along the length of the curve needed to travel one
wavelength λ along the x-axis:

α =
λ

Λ
=

wavelength

arc length of one wave
. (2.84)

Thusα−1 is the expansion factor for arc length accounting for waviness.
We assume that the flagellum is inextensible. As in the swimming inex-

tensible sheet, an observer moving to the right who sees a standing wave,
will see a point of the flagellum moving along the sheet to the left. Because
of inextensibility, the speed of the point is a constant Q, the velocity along
the flagellum being −Qt. We then have,

V = αQ. (2.85)

The observer watching a standing wave thus sees the material points as
satisfying

r = R(s+ Qt). (2.86)

If now the flagellum swims with velocity U i, a material point on the flag-
ellum moves relative to the fluid at infinity with velocity w, where

w = (U + V )i −Qt. (2.87)

At this stage the fundamental assumption of resistive force theory is made.
IfKT ,KN are the flagellar resistance coefficients discussed above, it follows
that w · (KT t +KNn)ds is the force dF exerted on the fluid by a length
ds of flagellum at a point with tangent and normal vectors t,n. The total
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force F exerted on the fluid by on a length L of flagellum may then be
written in a form which avoids reference to the normal vector explicitly,

F =
∫ L

0

w ·Mds, M = (KT −KN )
dR
ds

dR
ds

+KN I. (2.88)

Using (2.86) in (2.88) we obtain the total thrust T exerted by the flagellum
on the fluid

T = F · i = (KT −KN )(U+V )
∫ L

0

(X ′)2ds+KN (U+V )L−KTQ

∫ L

0

X ′ds.

(2.89)
Defining β by ∫ L

0

(X ′)2ds = βL, (2.90)

and noting that ∫ L

0

X ′ds = αL =
V L

Q
, (2.91)

we obtain

T = (V + U )[(KT −KN )βL +KNL] −KTV L. (2.92)

We can now study how the flagellum can swim. If the organism consists
only of flagellum, necessarily U is found by setting T as given by (2.92)
equal to zero. This defines the zero thrust swimming velocity U0;

U0

V
=

(ρ − 1)(1 − β)
ρβ + 1 − β

, ρ =
KT

KN
. (2.93)

Since β < 1, we see that U0/V < 0 if ρ < 1, so that the swimming
is opposite to the phase velocity of the wave when the flagellum exerts
greater normal than tangential force. The calculations of resistance based
upon local theory indicated that .5 < ρ < 1 so that smooth flagella should
always swim in a direction opposite the phase velocity of the wave.

If the flagellum is attached to a head, the thrust developed by the tail
must balance the extra drag of the head, and which we take to be LUKN δ.
Then swimming spped U is less than U0, i.e. the flagellum drifts backward
relative to the zero thrust swimming seed. Thus we may write

LUKN δ = (V + U )[(KT −KN )βL +KNL] −KTV L, (2.94)

and therefore

LUKN δ = (U − U0)[(KT −KN )βL +KNL], (2.95)

It follows that (KT −KN )β+KN is a composite resistance for the flagellum
as a whole, the waveform information being only in the parameter β.
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With the head attached, (2.93) thus becomes

U0

V
=

(ρ − 1)(1 − β)
ρβ + 1 − β + δ

. (2.96)

In calculating δ, it is usually acceptable to neglect the interaction of the
head with the tail, given that the tail is very slender.

Helical waves

Helical flagellar waves result from superposition of two orthogonal planar
waves, so that, relative to the moving observer seeing backwards tangential
motion along the flagellum,

R(s) =
(
α(s+ Qt), b cosk(s +Qt), b sin k(s+ Qt)

)
. (2.97)

Here as before αQ is the phase speed V , and α2+b2k2 = 1 by the definition
of s. Shifting back to the stationary observer, the velocity of a material
point on the flagellum is

(dX/dt−V, dY/dt, dZ/dt) =
(
0,−bk sin k(s+Qt), bk cos(k(s+Qt)

)
, (2.98)

and is therefore equivalent to a rigid rotation of the helical structure about
its axis.

We have so far discussed only thrust, but helical waves bring up explic-
itly the matter of the balance of torques in flagellar hydrodynamics. Within
Gray-Hancock theory the torque balance may be computed from the mo-
ments of resistance forces, but there is in addition the question of rotation
of the flagellum. If the flagellum is regarding as a rigid structure, it will
rotate along with the helical wave. If on the other hand the surface of the
flagellum is not free to rotate with the wave, torques associated with the
finite cross section of the flagellum can be eliminated.4

We remark that within Gray-Hancock theory, simultaneous torque and
thrust balance for a headless flagellum is impossible, see exercise 2.5. Head
rotation, as well as restoring torques due to the mass distribution in a grav-
itational field, can provide the balance. An appealing idea, due to Chwang
and Wu [5], is to use rotation of the flagellum itself to balance swimming
torque. A circular cylinder of radius a spinning on its axis with angular
velocity Ω in a viscous fluid generates a simple steady velocity field

u =
a2Ω × r
r2

, (2.99)

where r is the cylindrical polar radius. The resulting torque on the fluid per
unit length is 2πµa2Ω. For a curve of projected length αL, the net torque

4G.I. Taylor [15], in a delightful experiment, constructed a device with zero
flagellum torque by rotating a rigid helical wire inside of a flexible tube, the tube
being fixed to an essentially stationary body.
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about the line of swimming is 2πµa2ΩLα, and this is available for canceling
the sswimming torque. The body rotation does not affect (to leading order)
the thrust and moment caculations of resistive force theory.

Efficiencies in resistive force theory

It is of interest to examine the efficiency of flagellar locomotion in the con-
text of Gray-Hancock theory, because the rather simple expressions allow
an investigation of the effect of body geometry as well as various ways to
define efficiency

Efficiency should be a the ratio of the absolute minimum work needed
to locomote the body at some speed, divided by the work acually done to
locomote the body at that speed. In Stokes flow and for the same body,
different motions relative to the standard frame would in general lead to
different efficiencies of locomotion.

According to Gray-Hancock theory, the total work done by the flagellum
is just

∫ L

0

w·Fds =
∫ L

0

w·M·wds =
∫ L

0

[(w·t)2(KT −KN )+KNw
2]ds. (2.100)

Inserting (2.87) we obtain

Work = Φ = KTL[(V +U )2β − 2V (V + U ) +Q2] +KNL(U + V )2(1− β).
(2.101)

Since we know total work equals total viscous dissipation, we have recalled
the symbol Φ which we have used for the latter, and dropped the time
average as irrelevant to the present calculations.

Using the definitions (2.40) in our previous discussion of efficiency, it is
of interest to consider the decomposition Φ = Φ11 + 2Φ12 + Φ22 in the
context of a resistive force theory. Now we have noted from (2.95) that the
effective resistance coefficient for the flagellum is (KT − KN )β + KN , so
that Φ11 will equal the work done by moving an object with this resistance
coefficient at the swimming speed U . Recalling that Φ22 was defined only
in terms of body movements while swimming, in Gray-Hancock theory it
must equal to the work done if the swimming speed is zero. Thus

Φ11 = U2L[(KT −KN )β +KN ], (2.102)

Φ22 = V 2KTL(β − 2 + α−2) + V 2KNL(1 − β), (2.103)

and so
Φ12 = V U (KT −KN )L(β − 1). (2.104)

Notice that, if U is equal to the zero thrust swimming speed, so that
U [(KT − KN )βL + KNL] = V (KT − KN )(1 − β)L, then Φ11 = −Φ12
as was noted to follow from our general arguments.
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If we now adopt the efficiency (2.42), we may write this as

η = (Φ22/Φ11 − 1)−1, (2.105)

so that the efficiency is maximized by minimizing Φ22/Φ11. Now by the
Schwarz inequality it follows that α2 ≤ β, and therefore to maximize effi-
ciency we takin α2 = β in Φ22. Then, in zero thrust swimming, we have

Φ22/Φ11 ≥ [KT − (KT −KN )β][(KT −KN )β +KN ]
(KT −KN )2(1 − β)β

, (2.106)

or

Φ22/Φ11 ≥ [ρ− (ρ − 1)β][(ρ− 1)β + 1]
(ρ − 1)2(1 − β)β

. (2.107)

Note that any extremum of this ratio is also an extremum of 1/β+β/(1−β).
Thus we obtain a minimum at β = 1/2, so that

Φ22/Φ11 ≥ (1 + ρ)2/(1 − ρ)2. (2.108)

The maximum efficient is thus

ηmax =
(1 − ρ)2

4ρ
, (2.109)

occuring with U0/V = ρ−1
ρ+1 . A reasonable choice of ρ is .7, yielding ηmax =

.032 and U0/V = −.176. These numbers are typical are typical of Stokesian
swimming.

Other definitions of efficiency have been used. Lighthill [17] introduces
an efficiency for the headless flagellumKTLU

2L/Φ. That is, the work done
by the tangential drag of the stretched straight flagellum is divided by total
dissipation. This differs from (2.42) only in that the drag is for the stretched
straight rather than the wavy body. We can therefore expect this efficiency
to be lower than (2.42). Again maximizing with respect to β = α2, the
optimal β is found to be (1 + ρ1/2)−1 and there results

ηmax = (1 − ρ1/2)2, U0/V = ρ1/2 − 1. (2.110)

With ρ = .7 we then have ηmax = .027, U0/V = −.163.
If the wave is helical with β = cos2 ψ where ψ is the pitch angle of the

helix, then Lighthill’s op[timal efficiency at ρ = .7 gives an optimal pitch
angle of 42o, while (??) gives 45o.

Both of these efficiencies can exceed unity for sufficiently large ρ, namely
ρ > 0 for (2.110) and 5.83 for (2.42). We shall see in the next section that
such values lie way beyond the numbers predicted by asymptotic theories
of flagellar hydrodynamics. Of course we are dealing here with an approx-
imate Stokesian theory based upon resistance force theory. Nevertheless it
is reasonable to propose that η as defined by (2.42) cannot exceed unity,
implying the general result Φ11 ≤ 1

2
Φ22.
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2.8 Formal theory of slender bodies

Batchelor [3], and Cox [4] have shown that Stokes flow past slender bod-
ies of characteristic length L and radius of cross section a can, for small
ε = a/L, be expressed expressed as an asymptotic expansion in powers of
[− log(ε/2)]−1. Although these studies are of fundamental importance for
the motion of slender bodies in Stokes flow, this asymptotic expansion is
not well adapted to the study of zero-thrust swimming. This point was
made by Lighthill [18], who notes that for a zero-thrust flagellum there is
considerable advantage in using a the approach of the loical theory given
above, by asking for the boundary compatible with a given force-dipole dis-
tribution, rather than the other way around, where the body is moved and
we fond the required force-dipole distribution. Lighthill formulates this ap-
proach in terms of a key theorem which we now present and prove with the
help of elementary estimates.

We again consider a flagellum having a circular cross section of constant
radius a, and having as axis a curve C : r = R(s). By Stokeslet we again
mean the field (2.67), and by dipole with moment i we mean the field
1
4π∇(x/r3).

Theorem 1 Let u be the flow field consisting of a Stokeslet distribution of
strength f (s) on C, plus a dipole distributiion of moment −a2fn/4µ on C,
where fn(s) is the projection of f onto the plane P(s) perpendicular to C.
Consider z section s = s0 and let σ(s0) denote the circular intersection of
P(s0) with the surface of the flagellum. We assume

(1) that the improper integral of Stokeslets S,
∫

|s−s0|>A

S(r− R(s)) · f (s)ds (2.111)

defines a function of r, differentiable in some neighborhood of the center of
σ0 for each A > 0;

(2)that f ′(s) and R′′(s) are continuous function, uniformly for −∞ <
s < +∞;

(3) that there is a constant B such that |R(s) − r0| > B|s − s0| for
sufficiently large |s−s0|, where r0 is the position vector for the point s = s0.

Let

f0 = max
s

|f (s)|, L−1 = max
s

|R′′(s)|, l−1 = f−1
0 max

s
|f ′(s)|, (2.112)

and set ε = a/L. Then, as ε→ 0,

u(σ0) =
1

4πµ
fn(s0) +

∫

|r0−R|>δ

> δS(r0 −R(s)) · f (s)ds+O(E), (2.113)

where δ = a
√

e
2

and E = (f0/µ)(1 + L/l)ε1/2.5

5Here as well as elsewhere we use the O(·) symbol in its technical sense:
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2.8.1 Remarks

Before we procede with the proof of this result, we make a few remarks
about it. Lighthill [18] notes that direct integrations for particular f (s)
suggest that the actual error is O(ε). it is not known if the ε1/2 estimate is
sharp. Nevertheless, the main point of the result is that the error is very
small compared to any inverse power of − log ε. Note that if L = ∞, the
error E becomes indeterminant, while if l = ∞ the error remainsO(ε1/2)
but the integral on the right of (2.113) diverges logarithmically. For un-
dudlating zero-thrust flagella of finite length we can expect the theorem to
give a good approimatiion provided that the length exceeds several wave-
lengths. On the other hand, if the flagellum pushes a large cell body and is
therefore delivering non-zero thrust, the resistance as the flagellum drifts
backward relative to its zero-thrust motion is computed by considering
Stokes flow with this drift velocity past the wavy surface. For this calcula-
tion the series expansions of [3] and [4] must be used, proceeding in powers
of ∆ = [− log(ε/2]−1. Thus the error of actually computing resistance co-
efficients is not indicated by (2.113).

Even in the case of zero-thrust swimming, (2.113) indicates that there
is no exactly local relation between velocity and resistance. The velocity
of the fluid at a given section depends upon all point so the flagellum.
A semi-local “range of influence” for the force ata given section is roughly
several wavelengths of motion. This range of influence increases with l until
the entire flagellum is affected. From these deductions Lighthill concludes
that the rational approach to flagellar hydrodynamics must account for the
quite different Stokes flows created in the zero thrust and non-zero thrust
cases. The latter are strongly non-local, the former at most “semi-local”on
the scale of the wavelength.

It is worth noting how the form of (2.113) reflectsthe approximate local
theory of resistance coefficients. If in our expressions (2.74) and (2.81)
defining KT ,KN , we replace L1L2 by δ2 = a2e/4, then K−1

T vanishes and
we are left with only a normal resistance with KN = 4πµ. This shows
that the analysis leading to (2.113) isolates just enough of the flagellum
to extract the slight dominance of KN as a local effect. The rest of the
contribution for the forces, both normal and tangential, is put into the
non-local integral.

As a final point it is worth noting that, since we might expect that in
applications the velocity rather than the force to be prescribed, the analysis
thus poses an interesting integral equation for f .

f(ε) = O(g(ε)) as ε → 0 if there are constants A, ε0 such that |f | < A|g| for
0 < ε < ε0.



2.8 Formal theory of slender bodies 25

2.8.2 Proof of the theorem.

For now the reader is referred to Chapter 6 of mechanics of Swimming
and Flying to see the main steps. Note that the notation there is slightly
different. Eventually a simplified version of the proof, which corrects some
typos, will appear in this subsection.

2.8.3 Application to helical waves

The application of the theorem to an infinite zero-thrust helical flagellum
is significant because of its biological relevance as well as because of the
remarkable fact that the integral equation for f posed by (2.113) can be
solved by inspection. Indeed, for a helical flagellum (2.97) the force distri-
bution should be invariant under the symmetry of the helix, in particular
under s → s + ∆s, x→ x+ α∆s, y → y cos θ − z sin θ, z → z cos θ + y sin θ,
where θ = k∆s. This suggests that for zero mean thrust to prevail, f will
have y and z components that are linear combinations of sin ks and cos ks,
whereas the x component, necessarily constant, must vanish. The appro-
priate phase can be cetermined by inspection and Lighthill [18] finds that
the ncessary boundary velocity is generated by taking

f (s) = (0, h sinks,−h cos ks), (2.114)

were h is a constant. The velocity of the points of flagellum through the
fluid is w = (U + V )i − Qt, so the velocity of the fluid at the body is
(−U,Qbk sin ks,−Qbk cos ks). Now, with t = (α,−bk sin ks, bk cos ks)

fn = f − f · tt = hα(bk, α sin ks,−α cos ks). (2.115)

It is then possible to bring(2.113) into the following form:

(−U,Qbk sin ks,−Qbk cos ks) =
hα

4πµ
(bk, α sin ks,−α cos ks)

+
1

8πµ

∫

G<δ

G−3[(0, h sinks,−h cos ks)G2 − bhG sink(s− s0)ρ]ds (2.116)

where

G = [α(s− s0), b(cosks − cos ks0), b(sinks − sin ks0)]. (2.117)

The x-component of (2.116) thus gives, with k(s−s0) = θ in the integrand,
the zero thrust swimming velocity in the form

U0 =
hαbk

4πµ
[ ∫ ∞

kδ

θ sin θ
H3(θ)

dθ − 1
]
, (2.118)
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where H(θ) = [α2θ2 + 2(1 − α2)(1 − cos θ)]1/2. Similarly the other two
components yield

Qbk =
hα2

4πµ
+

h

4πµ

∫ ∞

kδ

cos θ
H(θ)

dθ +
h(1 − α2)

4πµ

∫ ∞

kδ

sin2 θ

H3(θ)
dθ. (2.119)

Thus, given the force, we determine the swimming speed and the helical
wave speed.

Calibration of resistance coefficients

We now see what information we can get from this helical, zero-thrust
solution if we try to express the equilibrium using force coefficients. Recall
that our aproximate local theory gave

KT =
4πµ

log(4L1L2/a2) − 1
, KN =

8πµ
log(4L1L2/a2) + 1

(2.120)

Thus the combination κ ≡ 4πµ/KN − 2πµ/KT = 1
For the helical flagellum, the tangential component of velocity is

ut = (−U,Qbk sin ks,−Qbk cos ks)·(α,−bk sin ks, bk cos ks) = −αU0−Qb2k2,
(2.121)

whereas the tangential force is −bkh, and so by definition

KT = bkh[αU0 + Q(1 − α2)]−1. (2.122)

Similarly
KN = hαbk(Qα− U0)−1. (2.123)

What then is κ = 4πµ/KN − 2πµ/KT in the helical case? We get

κ = 2πµ
[Qb2k2α+ (α2 − 2)U0

hαbk

]
. (2.124)

We thus have

κ =
α2 − 2

2
[ ∫ ∞

kδ

θ sin θ
H3(θ)

dθ − 1
]
+
α2

2
+

1
2

∫ ∞

kδ

cos θ
H(θ)

dθ

+
(1 − α2)

2

∫ ∞

kδ

sin2 θ

H3(θ)
dθ. (2.125)

This may be brought into the form

κ ≈ κ(α) =
α2

2
I1(α) +

1
2
I2(α) + (2 − α2)/2, (2.126)

where I1,2 are both integrals which exist as kδ → 0, so that for small kδ
we have

I1 ≈
∫ ∞

0

θ sin θ − sin2 θ

H3
dθ + 1, (2.127)
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I2 =
∫ ∞

0

sin2 θ + cos θ(α2θ2 + 2(1 − α2)(1 − cos θ) − 2θ sin θ
H3

dθ. (2.128)

From these results it is easy to see that κ(1) = .5. We show the variation
for other α in Figure 2.3.

Figure 2.3: κ = 4πµ/KN − 2πµ/KT as a function of α for the helical
flagellum.

Note that the Gray-Hancock value of 1 not a good representative constant
value. Shack et al. [?] have proposed, on the basis of the theory of Cox [4],

KT =
2πµ

log(2q/a)
,KN =

4πµ
log(2q/a) + 1

2

, (2.129)

where q = 1
2πeγ λ ≈ .09λ for force distributions with wavelength 2π/λ, γ

being Euler’s constant 0.577 . . .. For these coefficients κ = 1/2, which from
Figure 2.3 is not an unressonable value. But in any case the impossibility
of a universal constant value of κ can not be achieved, and this calibration
is an indication of the impossibility of an exact, fully local resistive force
theory.

2.9 Ciliary propulsion

A second basic swimming mechanism in the Stokesian realm involves the
collective use of many small hairlike organelles called cilia. Although flag-
ella and cilia of the eukaryotic organisms (e.g. protozoans, algae, and the
multicelluar organisms) are apparently identical in ultrastructure, we have
used the term flagellum when there is only one, or a small number of these
appendages on a cell, and in spermatozoans and the flagellates, and will
use cilia to denote large numbers of them on the cell, as in the opalinates
and the ciliates (see the discussion of the biology of locomotion in chapter
??). The ciliated organisms tend to have bodies which are larger that the
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cell bodies of the spermatozoans by an order of magnitude. Cilia tend to
be shorter that flagella, however, which puts their hydrodynamics firmly in
the Stokesian realm.

Bacteria have organelles which are also called flagella, but they are very
different in ultrastructure and physiology, see ??. Also, the term cilia is
used in connection with various ciliated tissues in metazoans (many-celled
animals), and are found in the lining of our respiratory tract. But in these
cases there is usually only one or a small number of cilia per cell.

Because of the proximity of a cilium to the cell wall, we can expect to
find considerable interaction between the two. Thus we might expect to
see differences between the movements of cilia and flagella proper. This,
and the larger size of the cell, suggest that ciliary locomotion might have
some adaptive advantages for larger cell bodies. Both flagellary and ciliary
modes are widespread, so both are evidently successful strategies, and one
can speculate on what trade-offs the distinctly different morphology might
represent.

In one sense the proliferation of hairlike appendages is natural to the
Stokesian realm, purely on the basis of the efficient use of material. The
movement of a cylindrical rod of radius A and length L will, according to
our approximate local theory, generate a force of order µUL/ log(L/A). If
the cylinder is broken up into N � 1 thin hairs of length L and radius a =
A/

√
N , the total force on all the hair is of order NµUL/ log(L

√
N/A). This

shows that a Stokesian parachute could be made efficiently of hairs. Such
a strategy if probably seen in seed dispersal by plants such as dandelions,
and by the membraneless hairs utilized as wings by certain minute flying
insects.

Such considerations alone may not, however, suffice to explain the pos-
sible value of ciliary propulsion to the organism. We have seen from the
Gray-Hancock theory that the mechanical efficiency of a flagellum depends
on resistances through their ratio ρ, and the efficiencies of single flagella
tend to be in the range 1 − 10%, with 4% typical. Given the prevalence of
both strategies, it is perhaps not surprising that efficiencies in ciliary loco-
motion are comparable, see [20] and Exercise 2.6. Although these estimates
are approximate, the efficiencies might be regarded as unexpectedly high
in view of the adverse effects of interaction with the cell wall.

Perhaps the most compelling advantage of the ciliary strategy is its flex-
ibility. A large number of essentially identical organelles can be distributed
and coordinated as a sort of standard “ciliary carpet”. Pieces of this carpet
can be arranged as needed on a cell to optimally move a cell of given size
and shape. A possible disadvantage of the ciliary mode is the clear need to
coordinate the motion of a large number of organelles.
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2.9.1 The motion of an individual cilium

Typical parameters of a cilium are: length ∼ 10−3 cm = 10 µm (1 µm =
10−4 cm ); diameter ∼ .25 µm; tip speed ∼ 0,2 cm/sec; beat frequency ∼
30 cycles/sec. A typical beat cycle consists of two parts, an effective stroke
and a recovery stroke, see Figure 2.4.

See figure page 64 of MS&F.

Figure 2.4: The stroke sequence of a cilium. (a) Effective stroke. (b)
Recovery stroke.

The effective stroke may take somewhat less than 1/2 a cycle. A Reynolds
number for a single cilium based on length and tip speed is about 0.02. The
Reynolds number based upon ciliary diameter is smaller by a factor of 1/40.

Cilia may beat in a vertical plane, as we imply in Figure 2.4, but in some
cases the recovery stroke involves out-of-plane sideways movements. Cilia
may move as a bundle, comprising a compound cilium. Helical waves are
also observed.

In any case the basic motion seems sound from a fluid dynamic view-
point. The effective stroke tends to be broadside on, developing the larger
force associated with the resistance coefficient KN . During the recovery
the motion tends to be tangential, and therefore to involve the somewhat
smaller resistance coefficient KT .But it should be borne in mind that there
are many variations of the basic stroke and the foregoing remarks have not
addressed the interaction of the cilium with the wall.

2.9.2 Metachronal coordination

An important aspect of ciliary locomotion is the manner in which the cy-
cles of cilia are coordinated as a function of position. Observations of the
surface of a ciliate show metachronal waves of coordination in the beating
pattern. These waves, which flow across the cell body with well-defined
wave speed and wave length, have several forms. Figure 2.5a shows sym-
plectic metachrony, in which the cilia tips in the effective stroke move in
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the same direction as the metachronal wave. Antiplectic metachrony occurs
when these move in opposite directions, see Figure 2.5b. It is observed that
symplectic metachrony involves less horizontal movement of the cilia tips
than does antiplectic metachrony. The phase of the cilia may also vary in
the lateral direction, so that waves may propagate obliquely or even at
right angles to the plane of the beat. The terminology used is summarized
in Figure 2.6.

See figure page 65 of MS&F.

Figure 2.5. Metachronal coordination. (a) Symplectic, side view, planar
motion. (b) Antiplectic.

See figure page 65 of MS&F.

Figure 2.6: The terminology for an array of cilia, top view. (After Blake
and Sleigh [21]).

A typical protozoan with symplectic metachrony is the species Opalina
ranarum, a disc-shaped organism inhabiting the gut of a frog. It is about
200 µm thick and the cilia are 10 µm in length, arranged in rows 3 µm
apart. Within each row the distance between cilia is about 0.3 µm. Beat
frequency is about 5 cycles per second. The metachronal wavelength is 30
to 50 µm and the metachronal wave speed (the speed of the crests) is 100-
200 µm/sec. The cell swimming speed is about 50 µm/sec, or about 1/4 of
the wave speed.
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Typical dexioplectic metachrony is seen in Paramecium (which, together
with Opalina, has been widely studied in connection with ciliary locomo-
tion). This cigar-shaped protozoan, roughly 200 µm long, has cilia of length
12 µm arranged in a square array about 2-3 µm apart, beating with a fre-
quency of 20-30 cycles/sec. The metachronal wavelength is only 10 µm, the
wave speed being about 200 µm/sec. Whereas the last figure is comparable
to Opalina, the swimming speed of Paramecium is 1000-2000 µm/sec, 5 to
10 times the wave speed. Models for ciliary propulsion must account for
this wide range of behavior among ciliates.

2.9.3 The envelope model

A natural way to model the effect of cilia on the fluid, and one that is
particularly appropriate to this discussion, is to replace the surface of wav-
ing cilia tips by a continuous sheet, thus realizing the stretching, waving
swimming sheet first studied by G.I. Taylor. This envelope model takes the
view that a closely spaced array of beating cilia will move the nearby fluid
very much as if the cilia tips were a surface. Note that this is essentially a
consequence of Stokes’ paradox, indicative of the enormous hydrodynamics
range of a long slender object has in a Stokesian fluid.

In the envelope model the motion of the individual cilia, apart from the
locus of tips, plays no role. The tip loci are assumed to provide adequate
parameters for the metachronal waves. It is important to note that these
parameters need not be constant over the cell body (as they were assumed
to be for the sheet itself). We shall however, in the present section, keep
the assumption of constant parameters and simply reinterpret the results
we have for the swimming sheet in the context of the envelope model.

The model assumes that the sheet is impermeable to the fluid, although
of course this is not exactly true, particularly in the case of antiplectic
metachrony, where the tips are widely spaced during the effective stroke
(Figure 2.4b).

We shall use the result given earlier for the swimming sheet. The coor-
dinates of the sheet satisfy

xs = x+ a cos ξ, ys = b sin ξ, ξ − kx− ω. (2.130)

Taking a typical point by setting x = 0 we have

(bxs − ays sinφ)2 + a2y2
s cos2 φ = a2b2 cos2 φ. (2.131)

The orbit is thus a ellipse. With xs = aX, ys = bY we get

X2 − 2XY sinφ+ Y 2 = cos2 φ. (2.132)

The form of the locus for various φ, b/a can thus be found, and we give
some examples in Figure 2.7.
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See figure page 67 of MS&F.

Figure 2.7: Tip loci in the envelope model, ω, a, b > 0.

Let us now relate the parameters of the sheet to the metachronal wave.
The uniform flow induced by the sheet and the rate of working of the sheet
are given by

U =
1
2
ωk(b2 + 2ab cosφ− a2), W = µω2k(a2 + b2). (2.133)

Recall that U > 0 means that the sheet swims to the left. This occurs
here if φ = 0 and b > (

√
2 − 1)a. That is, the sheet swims in a direction

opposite to the metachronal wave if cilia tips move mainly up and down.
This is in rough agreement with observations of Opalina. If φ = π and
a > (

√
2−1)b, so the main tip motion is horizontal, the sheet moves to the

right, in the direction of the metachronal waves, in accord with observations
of Paramecium.

Given U and W , we can seek to maximize |U | for a given W . We suppose
that ω and k are fixed, and set (a, b) = R(sin θ, cos θ), with R also fixed.
We then seek extremals of cos2 θ + 2 cos θ sin θ cosφ − sin2 θ = cos 2θ +
cosφ sin 2θ, with respect to variations of θ, φ. Differentiating with respect
to φ we get − sinφ sin 2θ = 0, so either φ = 0 or π, of else sin 2θ = 0.
The derivative with respect to θ gives −2 sin 2θ + 2 cosφ cos 2θ = 0, so
that either sin 2θ = 0 and cos φ = 0, or else one of the following two cases
holds: φ = 0, tan2θ = 1 or φ = π, tan 2θ = −1. The first choice implies
that either sin θ of cos θ vanishes, so that either a or b is zero. The second
choice (φ = 0) implies 2 tan θ = 1 − tan2 θ, so either a = (

√
2 − 1)b or else

b = (1 −
√

2)a. The last choice (φ = π) implies 2 tan θ = tan2 θ − 1, so
either a = (1−

√
2)b or else b = (

√
2−1)a. As we may assume that a, b > 0

without loss of generality, we obtain swimming speeds ±1
2ωkR

2 if a or b
vanishes, and

U =
1√
2
ωkR2, φ = 0, a = (

√
2 − 1)b, (symplectic), (2.134)

U = − 1√
2
ωkR2, φ = π, b = (

√
2 − 1)a, (antiplectic). (2.135)
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Thus, a speed gain of about 41% results from a combination of vertical and
horizontal movements of the envelope, and the optimal parameters fall in
a range already noted to be consistent with observation.

2.9.4 Macrostructure

We consider now the nature of the flow field about a ciliated organism
consisting of a cell body covered with some arrangement of cilia. Define
L a s a typical cell diameter ∼ 200 µm, λ = the metachronal wavelength
∼ 40 µm, l = cilium length ∼ 10 µm. These lengths form a decreasing
sequence and therefore suggest an envelope theory relying on the ordering
L � λ � l. Recall that the hydrodynamic effects of the sheet extend
outward a distance O(λ) from the envelope surface.

With this ordering, it becomes possible to consider the modulation of the
parameters of the sheet on the scale L of the cell body. We may then say
that the sheet parameters are slowly-varying relative to the scale λ of the
metachronal waves. This give the cell body a macrostructure, defined by
the functions modulating the parameters and determining their values over
the surface of the cell, see Figure 2.8.

See figure page 69 of MS&F.

Figure 2.8: Macrostructure of a ciliate, L � λ � l.

While the sheet surface then essentially replaces the cell surface, it must
be understood that a thin sublayer, or thickness l, is actually present and
the motions of the cilia within it must determine the envelope parameters.
One can of course imagine another approach involving calculations within
the sublayer ( see the following subsection), for which the flow field set up
by the cilia emerges as the outer edge of the sublayer. Here, we disregard
the sublayer itself but regard the conditions out a distance O(λ) from the
envelope surface as hydrodynamically equivalent to that produced by the
sublayer. This viewpoint was the basis for comprehensive theory of ciliary
propulsion developed by Brennen [25], [24].

From the elements of the sheet theory we can piece together the flow field
on the scale of the cell body. We now refer to the “surface of the cell” where
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we actually mean the outer edge of the decaying flow structures induced
by the oscillating envelope.

First note that the velocity of the fluid on the surface of the body involves
the cell swimming velocity , its angular velocity, and the velocity produced
by the sheet itself (equal to minus the local velocity of swimming of a piece
of the sheet). In principle, we must also include the modulation of the mass
flux fm = −1

2ωβb. The partial derivative of this quantity, in the tangent
plane at the surface of the cell in a direction orthogonal to the crests of the
waves, must be minus the normal component of velocity supplied by the
modulated envelope at its outer edge. Since the modulation is on the scale
L, whereas k = 2π/λ, the normal flow so induced will be O(λ/L)U and so
is negligible in our ordering of the lengths λ, L.

Therefore, relative to the moving cell, the velocity of the fluid at the cell
boundary is

u = uc = k−1Uk + r× Ω. (2.136)

This would be replaced by the no-slip condition uc = 0 if we were dealing
with a rigid, non-rotating body. Relative to am observer stationary with
respect to the distant fluid, the velocity of a point on the cell body is just
Usc + uc where Usc is the swimming velocity of the cell.

While this last boundary condition would appear to have captured the
effects of the envelope, it is in fact incomplete owing to the momentum flux
components we computed for the sheet, whose modulation will give rise
to effective surface stresses, in the same way that the waving cilia present
an effective surface velocity. The fact that these envelope stresses turn out
to be as important to the macrostructure of the flow as the tangential
flow induced by the sheet, is an important fact emerging from Brennen’s
analysis.

The tangential and normal momentum fluxes can be written as αtk, αnk,
where k is the wave number vector for the metachronal waves, lying in the
tangent plane to the cell surface, and αt = −2µωγb, αn = µωβb. Consider
now a small, simply-connected domain D on the cell surface, bounded by
a curve C which is positively oriented relative to the outer normal n of
the cell surface. The size of D should be such that it is large enough to
encompass many metachronal waves, but is still small compared to the
body size L. At each point of C, let t1 be a tangent vector which is also an
outer normal to C, and let t2 be another tangent vector, orthogonal to t1

and pointing in the direction of the tangent vector of the curve C, so that
n = t1 × t2 on C.

We then define the effective envelope stress as

σenv = k−1kσt + nσn, (2.137)

where ∫

D

(σt, σn)dS =
∮

C

(αt, αn)k · t1ds. (2.138)
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Using the definition of t1,2 and Stokes’ theorem, we then have
∮

C

αt,n · t1ds =
∮

C

αt,n(n× k) · t2ds =
∫

D

n · [∇× (αt,n × k)]dS. (2.139)

Thus
σt,n = n · [∇× (αt,n × k)]. (2.140)

2.9.5 The ciliated sphere

We now carry out the construction of the flow field about a ciliated sphere,
as shown in Figure 2.9.

See figure page 70 of MS&F.

Figure 2.9: The ciliated sphere.

We suppose that ω, k and φ are constant, that the crests of the metachronal
waves are the circles of constant θ, as in the figure, and that a = a0

√
sin θ, b =

b0
√

sin θ. The net force exerted on the sphere in the x direction is then

F = 2πr20

∫ π

0

(sin2 θσt − sin θ cos θσn)dθ, (2.141)

where r0 is the radius of the sphere. In the spherical coordinate system we
find, from (2.140) that

σt = −2µωka0b0 sinφ
( 1
r0 sin θ

∂

∂θ
sin2 θ

)
= −4µωka0b0r

−1
0 sinφ cos θ.

(2.142)
σn = 2µωka0b0r

−1
0 cosφ cos θ. (2.143)

Consequently

F = −8
3
πµωkr0a0b0 cosφ. (2.144)

Thus, in steady swimming of the sphere, the Stokes flow will contain a
Stokeslet representing the corresponding force −F applied to the fluid. The
fluid velocity seen by the stationary observer then has the form of a sum of
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this Stokeslet and the remaining component of Stokes flow past a sphere,
namely an axial dipole:

u =
F

8πµ

( i
r
− r cos θ

r2

)
+ Ar30

(cos θ
r2

)
, (2.145)

Here A is to be adjusted to satisfy the boundary conditions on the cell
surface.

The latter are, if Usc = Usci,

uθ = (Usc + U0) sin θ, ur = −Usc cos θ, (2.146)

where U0 = 1
2ωk(b

2
0 + 2a0b0 cos φ− a2

0). (Note that our choice of variation
of a, b was chosen to simplify both the boundary condition on uθ and the
calculation of F .)

From (2.145) and (??) we have

F

8πµ
− A = Usc + U0,

F

4πµ
+ 2A = Usc. (2.147)

Thus

Usc = −2
3
U0 +

F

6πµr0
= −1

3
ωk(b20 +

10
3
a0b0 cosφ− a2

0). (2.148)

Note that if a0 = 0, the sheet swims at two-thirds of the velocity of an
infinite sheet with these parameters. We also find that |Usc|/[ωk(a2

0 + b20)]
has a maximum value of about 0.648 compared to 0.707 for the infinite
sheet. A number of examples have been worked out by Brennen [25], who
compares the predicted swimming speeds with observations.

We now compare the ratio of the maximum swimming speed to the phase
speed, equal to 0.648k2(a2

0 + b20), with observations. if we take a2
0 + b20

to equal one-fourth of the square of the cilium length, then for Opalina
the ratio is (2π)2(0.65/4)(102/402) = .40. The observations indicate that
k|Usc|/ω = 0.25, so the theory is reasonably close. For Paramecium the es-
timates given by the envelope theory are off by an order of magnitude, and
it is believed that the failure of the envelope model in that case is due to in-
accurate calculation of the envelope parameters, probably associated with
the tip separation in antiplectic metachronism. Intuitively, when tips sep-
arate during the effective stroke, the cilia should be more effective because
of reduced cilium-cilium interaction, and this could account for the higher
swimming speeds which are observed in Paramecium. Also tip separation
should allow fluid to circulate into the sublayer, making the assumption
of an impenetrable surface untenable. With these points in mind, we turn
now to a brief discussion of the flow field at the level of the sublayer.

2.9.6 Microstructure: the sublayer

Unchanged from pages 72-74 of MS&F. To be added later.
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2.10 Exercises

2.1. Show that, if ui, i = 1, 2, 3 denotes the velocity field given by (2.4)
with a = i1, i2, i3 respectively and the same function χ in each case, then
x1u1 + x2u2 + x3u3 + 2∇χ is divergence-free and has the form of the first
term in (2.12) with P = χ. Similarly, show that, if ui, i = 1, 2, 3 denotes
the velocity field given by (2.8) with b = i1, i2, i3 respectively and the same
function ψ in each case, then x1u1 + x2u2 + x3u3 is divergence-free and
has the form of the second term in (2.12) with T = ψ.

2.2.Using the same basic approach as for the uniqueness proof for the
Stokes equations, prove the following result: Let a finite rigid 3D body
move with steady velocity U in a fluid otherwise at rest, From the steady
Navier-Stokes equations for a fluid of constant density, prove that, if D
denotes the drag on the body,

UD =
µ

2

∫

V

( ∂ui

∂xj
+
∂uj

∂xi

)2

dV.

Here V is the domain exterior to the body. The quantity on the right is
the total viscous dissipation in the fluid, so this is a mechanical energy
equation, stating that the work done on the fluid by the body is equal to
the rate of heating of the fluid by viscous dissipation. What conditions on
the decay at infinity are needed in this proof? Show that, if the body surface
is in motion with an arbitrary velocity uS(x), the viscous dissipation equals
the rate of working of the surface S on the fluid.

2.3. (a) Show that a sphere of radius r0 spinning with angular velocity
Ω in Stokes flow experiences a viscous torque −8πµr30Ω. Using the form of
solution given by (2.29) derive the Stokes drag law D = 6πµr0U , showing
in the process that the pressure is responsible for 1/3 of the total drag. In
these problems you can use

σrθ = µr
∂

∂r

(∂uθ

r

)
+

1
r

∂ur

∂θ
,

σrr = −p+ 2µ
∂ur

∂r
,

together with the divergence conditions on u.
2.4. Establish (2.39) and (2.41) using the definition of the stress tensor,

the divergence theorem, and the properties of u1,2.
2.5. Let the motion of a helical flagellum be given by (U +V )i−Qt plus

a rotation
(
0,−Ωb sink(s + Qt),+Ωb cos k(s + Qt)

)
. Show that the total

thrust on length L of flagellum thrust T is given by

L−1T = U [(KT −KN )α2 +KN ] + (V − αΩk−1)[(KT −KN )(α2 − 1)].

Show also that the torque mx about the axis (the x-component), defined
by i ·

∫ L

0 [(0, b cosk(s +Qt),−b sin k(s+ Qt)) × F]ds is given by
mx

b2kL
= Uα(KT −KN ) + (V − αΩk−1)[α(KT −KN ) − α−1KT ].
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From these two expressions, show that simultaneous torque and thrust
balance, T = mx = 0, is impossible for an isolated flagellum, in that when
both expressions vanish we must have U = V −αΩk−1 = 0. Thus swimming
is posssible only if there is a passive body attached to the flagellum which
can resist torque, or else there is surface rotation of the flagellum itself.
Also a keel, i.e. an asymmetric weight distribution, can be used to obtain
a restoring torque.

2.6. Define an efficiency of the ciliated sphere by

η =
6πµr0U2

W
.

WhereW is computed by integratingWs = µω2k(a2+b2) over the surface of
the sphere. Show that, if a2+b2 is distributed over the sphere in proportion
to sin θ, a2 + b2 = sin θ(a2

0 + b20), optimal efficiency is about

5
(a2

0 + b20
r0λ

)
, λ =

2π
k
.

For a ciliate such as Opalina, we can take r0 = 80 µ, λ = 40 µm, and
a2
0 + b20 =25 µm2, in which case ηmax ≈ 4 percent. Extend (2.109) to the

case of a flagellum attached to a head with resistance coefficient KN δ,
making use of the swimming speed for that case (2.96).
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