Ordinary Differential Equations Homework 10 Childress, Spring 2002 Due April 16

Note: This is the last homework to be handed in, graded, and returned with answers. Problems to be handed April 16 and 23 will constitute a take-home final, due in my office on or before May 2.

1. Consider complex-valued scalar functions of the real variable x, the second-order differential operator Ly = (p(x)y')' - q(x)y, and the boundary conditions $\alpha y(a) + \beta y'(a) = 0$, $\gamma y(b) + \delta y'(b) = 0$. The inner product here is

$$(u,v) = \int_a^b \overline{v}u dx,$$

where the bar denotes complex conjugate. Also p is continuously differentiable, q continuous, and $p \neq 0$ on [a, b]. Show that this problem is self-adjoint if and only if p and q are real, and $\alpha \overline{\beta} = \overline{\alpha} \beta$ and $\gamma \overline{\delta} = \overline{\gamma} \delta$, (which means $\alpha, \beta, \gamma, \delta$ can be taken as real).

- 2. Considering, as in problem 1 above, complex-valued functions of x on [a, b], under what conditions on p(x), q(x) will the differential operator Ly = p(x)y'' + q(x)y' be formally self-adjoint?
- 3. Prove that the following BVP has only the trivial solution among function twice continuously differentiable functions y(x) defined on [0, 1]:

$$(x^2y')' - e^{-x}y = 0, y'(1) + y(1) = 0, y(0) = 0.$$

- 4. For the operator $L = \frac{d^2}{dx^2}$ and y(x) defined on [0,1], with the boundary conditions y(0) = 0, y'(1) = 0, we consider the construction of the Green's function $K(x,\xi)$ and the eigenvalues and eigenfunctions satisfying $Ly - \lambda y = 0$.
 - (a) Show that 0 is not an eigenvalue.
 - (b) Construct explicitly $K(x,\xi)$.
 - (c) Find all non-zero eigenvalues, and the corresponding eigenfunctions.
 - (d) Represent K in terms of the eigenfunctions and eigenvalues.
 - (e) Recover the identity $\pi^2/8 = \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}$.
 - 5. Consider the equation

$$Ly = x(xy')' + 3y$$

and the eigenvalue problem $Ly = \lambda y$, 1 < x < 2, with boundary conditions y(1) = y(2) = 0.

- (a) Show that L is self-adjoint on functions satisfying these conditions provided that we define
- the inner product by $(z, y) = \int_1^2 \frac{1}{x} zy dx$. (b) Find the orthonormal (in the above inner product) eigenfunction and eigenvalues satisfying $Ly_n = \lambda_n y_n, \ y_n(1) = y_n(2) = 0, n = 1, 2..., \text{ and define } K = \sum_{n=1}^{\infty} y_n(x) y_n(\xi) / \lambda_n.$ $x^i = e^{i \ln x}$.)
- (c) Express the solution to the inhomogeneous equation $Lf = \log x$ as an expansion in the eigenfunctions.
 - (d) Solve $Lf = \log x$ explicitly. (Hint: $\log x/3$ is a particular solution.)