Due February 12

1. Prove that all solutions of the first-order system of two equations

$$\frac{dy_1}{dx} = -y_2 + y_1(1-A), \ \frac{dy_2}{dx} = y_1 + y_2(1-A),$$

where $A = y_1^2 + y_2^2$, exist for all x.(Hint: Let $|y| = A^{1/2}$ and consider $\frac{dA}{dx}$. Using problem 1 of Hwk 1, show that A and hence |y| is bounded for all x.)

2. Sketch the phase plane (the plane of $(y_1 = y, y_2 = y_x)$) of the second-order equation

$$\frac{d^2y}{dx^2} + y^2 = 0.$$

Describe the behavior of solutions from the point of view of global existence. (For example, the curves $y_2 = \pm \sqrt{2/3} (-y_1)^{3/2}$, $y_1 \leq 0$ form a cusp at the origin of the phase plane and divide it into two parts. A solution $(y_1(x), y_2(x))$ on the upper branch exists for all time and tends to (0,0). A solution starting at $(y_1 \neq 0, y_2)$ on the lower branch exists for a finite time only. Use the rolling ball analogy to understand the behavior in the two parts.)

3. The rotation of a rigid body in three dimensions is governed by the first-order equation $\frac{d\mathbf{M}}{dt} + \omega \times \mathbf{M} = 0$ where \times denotes the vector cross product. Here $\mathbf{M}(t) = (M_1, M_2, M_3)$ is the angular momentum vector relative to the spinning body, and $\omega(t) = (\omega_1, \omega_2, \omega_3)$ is the instantaneous angular velocity of the body. (This equation expresses the fact that relative to inertial space the angular momentum vector is a constant if no torques are applied to the body.)

Relative to principle axes of the body we have $M_i = I_i \omega_i$, i = 1, 2, 3, where I_i are the angular moments of inertia about the three axes. We assume the I_i have three different values.

(a) Show that the system has the component form

$$\frac{dM_1}{dt} + M_2 M_3 (\frac{1}{I_2} - \frac{1}{I_3}) = 0, \ \frac{dM_2}{dt} + M_3 M_1 (\frac{1}{I_3} - \frac{1}{I_1}) = 0, \ \frac{dM_3}{dt} + M_1 M_2 (\frac{1}{I_1} - \frac{1}{I_2}) = 0.$$

- (b) Show that $J_1 = M_1^2 + M_2^2 + M_3^2$ and $J_2 = \frac{M_1^2}{I_1} + \frac{M_2^2}{I_2} + \frac{M_3^2}{I_3}$ are constant for any solution.
- (c) Show that solutions exist for all time.
- (d) Examine by linearization the behavior of solutions near the three constant solutions where one and only one component of \mathbf{M} is non-zero. For example, near $\mathbf{M} = (M_1^{(0)}, 0, 0)$, M_1 will approximately stay constant while M_2, M_3 will satisfy in the linear approximation

$$\frac{dM_2}{dt} + M_3 M_1^{(0)} (\frac{1}{I_3} - \frac{1}{I_1}) = 0, \ \frac{dM_3}{dt} + M_1^{(0)} M_2 (\frac{1}{I_1} - \frac{1}{I_2}) = 0.$$

Thus show: the solution $M_i^{(0)}$ is linearly (neutrally) stable if $I_i = \max(I_1, I_2, I_3)$ or $I_i = \min(I_1, I_2, I_3)$, but is unstable if I_i has the intermediate value.

- (e) Let $I_1 = 1, I_2 = \frac{1}{2}, I_3 = \frac{1}{3}$. Show that then the two planes $M_1 \pm M_3 = 0$ are invariant under this system, i.e. a solution starting from a point on one of these planes, stays on that plane.
 - (f) Sketch the solution trajectories on the sphere $M_1^2 + M_2^2 + M_3^2 = 1$, for the special case (e).
- (g) Do an experiment to verify (d) using a book which is taped closed. For most books I_{max} corresponds to the direction perpendicular to the face of the book, I_{min} points across the smallest side of the face. Trying to spin the book about the longer direction (the intermediate case) results in *Eulerian wobble*.
- 4. Apply the Euler polygon construction to $\frac{d^2y}{dx^2} + y = 0$, y(0) = 0, y'(0) = 1, with $0 \le x \le 1$. Using $|\mathbf{y}| = \max(|y|, |y'|)$, find a step size h which makes $|y z| < 10^{-3}$ throughout this interval, z being the approximate solution.