Due March 5

1. For the double pendulum system presented in class, the positions of the two bobs are

$$(x_1, y_1) = (L_1 \sin \theta_1, -L_1 \cos \theta_1), (x_2, y_2) = (L_1 \sin \theta_1 + L_2 \sin \theta_2, -L_1 \cos \theta_1 - L_2 \cos \theta_2).$$

(a) Given that the pendulum is in the constant gravitational field (0, -g), and using $q_i = \theta_i$ and the p_i derived in class from the Lagrangian, show that the Hamiltonian H for the system is

$$H(q_1, p_1, q_2, p_2) = \frac{m_2 L_2^2 p_1^2 - 2m_2 L_1 L_2 \cos(q_1 - q_2) p_1 p_2 + (m_1 + m_2) L_1^2 p_2^2}{2L_1^2 L_2^2 (m_1 + m_2 \sin^2(q_1 - q_2))} + V,$$

$$V = -m_1 g L_1 \cos q_1 - m_2 g (L_1 \cos q_1 + L_2 \cos q_2).$$

- (b) Give the approximate Hamiltonian appropriate to small oscillations about $q_i = p_i = 0$. Do this by considering q_i, p_i small and retaining at most terms quadratic in these quantities in H.
- 2. (a) From the approximate Hamiltonian in problem 1(b) show that the Hamilton's equations for the linearized system reduce to

$$\ddot{q}_1 \approx \frac{g}{L_1(\mu - 1)}(q_2 - \mu q_1), \quad \ddot{q}_2 \approx \frac{g\mu}{L_2(\mu - 1)}(q_1 - q_2),$$

- where $\mu = 1 + \frac{m_1}{m_2}$.

 (b) From the linear system in (a), show that, if $L_1 = L_2$, the system is stable at the rest point
- $q_i = p_i = 0$. (Hint: Set $q_i(t) = Q_i e^{\lambda t}$, evaluate the determinant of a 2 × 2 matrix, and show that all roots λ are pure imaginary. Note that two periods are involved.)
 - (c) Show that in fact linear stability obtains for arbitrary L_1, L_2 .
- 3. Consider the 2nd-order linear equation u'' + p(x)u' + q(x)u = 0 for u(x), where p(x), q(x) are continuous for all x.
 - (a) Write the equation as a first order system for $\mathbf{y} = (y_1, y_2) = (u, u')$.
- (b) Show that the equation satisfied by the Wronskian is identical to the equation satisfied by the determine of the Jacobian $\frac{\partial y_i}{\partial \eta_i}$ of the solution satisfying $\mathbf{y}(0) = \eta$.
- (c) Show that if the orbits of solutions determine an area-preserving flow, then the Wronskian of any two solutions is a constant.
 - 4. In each case, find a second solution using variation of parameters:

(a)
$$y'' + 2y' + y = 0$$
, $y_1(x) = e^{-x}$.

(b)
$$y'' + 2xy' + 2y = 0$$
, $y_1(x) = e^{-x^2}$,

5. Show that, given one solution $y_1(x)$ of the equation, the method of variation of parameters can by used to reduce a third-order equation y''' + p(x)y'' + q(x)y' + r(x)y = 0 to a second order equation for some undetermined function, whose solution yields a solution of the third-order problem.