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1 Introduction

These notes are preliminary and informal. My aim is to provide an introduction
to some of the basic ideas that have emerged in recent decades in the fluids
literature that have a fundamentally topological character. That is, rather than
focusing on details such as velocity profile or pressure field, this material deals
with persistent invariant properties of a flow field, features which often have a
geometric interpretation. A basic reference is the book of Arnold and Khesin
[1]. Other references will be given below. My interpretation of TFD will omit
many technical details, but will I hope serve its purpose of translating some of
the important ideas into the language of classical fluid mechanics.

Topological ideas arise very naturally in fluid dynamics through the geom-
etry of the vorticity field, and early work by Lord Kelvin and others explored
knottedness of vortex tubes, for example. However the bringing together of in-
herently topological ideas from fluid dynamics into a coherent theory has been
a fairly recent endeavor, associated with the work of Moffatt among fluid dy-
namicists, and Arnold and Freedman among mathematicians.

An early example of topological thinking in fluid dynamics is the idea of
a simply-connected domain and the role of multiply-connected domains in the
analysis of lift by an airfoil in two-dimensional flow. A simple material curve
which encircles a “hole” in the domain is fundamentally distinct from one which
does not, and this property is an invariant of the flow field. There is no reference
here to dynamics, so this is the essence of the topological viewpoint. Similarly,
by calculating the circulation on such a curve the lift of a foil may be identified
with a “topological invariant”. In three dimensions, the knottedness of material
curves provide immediate examples of topological invariants. Perhaps the sim-
plest example of such invariants can be seen in the advection of a scalar field
c(x,y,t):

dc
N +u-Ve=0. (1)
Since contours ¢ =constant are material, there are basic features of the flow
(such as the number of local maxima or minima of ¢) which are topological
invariants (since diffusion of ¢ is not allowed).



We may thus summarize our viewpoint here as a focus on properties of a flow
field which are invariant under the flow (or are approximately invariant based
on time scales of interest). Since the technical aspects of fluid dynamics, e.g.
the regularity of the functions which are involved, will not be an essential part of
story. We shall simply assume that all functions we consider have the necessary
smoothness for the operations we perform on them. We further restrict attention
to flows of a fluid of constant density in a domain D which is either all of R3, or
else a bounded region isomorphic to the interior of a sphere, with zero normal
velocity imposed at its boundary. In a technical sense “smooth” functions and
maps are where the defining functions have continuous first partial derivatives,
which we adopt as its minimal meaning.

2 Preliminaries

We are interested in fluid motions in RN, N = 2 or 3. But we are also interested
in sets of points within RV. A manifold of dimension M < N in R is a set
of points each of which is fixed by specifying M real numbers. Examples of
manifolds in fluid dynamics are a stream-surface of a steady flow in surface in
R3 (two dimensional), and a vortex line in R® (one-dimensional). The above
definition is however two general for our purposes. For example there exists
a one-one correspondence of the interval 0 < x < 1 and the square 0 < z <
1,0 < y < 1, obtained by alternating the digits of the decimal expansions of
x,y to obtain a point on the line. This “one-dimensional” manifold looks like
a surface. We thus demand that our manifold of dimension M look “in the
small”, like RM. Thus, our curves in R? will look, on small scales, like little
line segments, i.e. copies of a piece of R!. This is basically demanding that
the point in R vary smoothly with the M “coordinates” of the manifold. By
saying that the manifold looks locally like RM | we are further assuming that the
fluid is indeed a continuum, i.e. expelling completely the underlying molecular
structure. Locally we thus have open sets and can define continuous functions
on the manifold in the usual way (the preimage of an open set is open).

A flow will distort any embedded manifold in general. This distortion can be
described by a map. The maps which we shall use will be one-one, continuous,
and with continuous inverse. Such maps are called homeomorphisms. If both
the map and its inverse are differentiable, the map is called a diffeomorphism. If
a velocity field is differentiable, it will move manifolds around in such a way that
they are connected by diffeomorphisms. As we have already noted above, we
shall not be discussing the degree of smoothness and so for all practical purposes
we can take the diffeomorphisms we discuss to be C>, i.e. C* for any positive
integer k. 1 We can also use the informal terminology “smooth transformation
of manifold” to describe a diffeomorphism.

As is already evident, the main kind of diffeomorphism which will interest
us here is that induced by a smooth flow of a fluid. We are familiar with
the Lagrangian picture of fluid flow: each fluid particle moves with position

n some accounts a diffeomorphism is defined as C>.



x(t,xo) where x¢ may be taken as the position at some time ¢y. This function
is determined from an Eulerian velocity field u(x,t) by the equation

ox

Tl u(x(t,xo),t), x(to, X0) = Xo. (2)

The time-T map of a manifold M contained in a fixed region D for fluid, by
a flow field u defined over D, is obtained by turning on the flow at some time
to and letting it carry the points of M for a time 7. For any differentiable u
this map is a diffeomorphism of D into itself, and when restricted to the points
of M, defines a diffeomorphism connecting M and its time-T" image Mp. We
shall sometime refer to the time-7" map induced by a flow on a manifold as the
time-T" Lagrangian map associated with this flow.

The mathematical description of this process makes use of a different termi-
nology. A vector field in R? is a special object belonging to the tangent bundle
of R3. The tangent bundle is actually a rather familiar object, since we like to
draw a picture of a vector field by picking points of R3 and attaching arrows to
them. The tangent bundle of R? is R? with a copy of R? attached to each of its
points. It is thus a product of the form R? x R3. The second R? is where the
“arrow” resides. For a single point, the collection of all the vectors that attach
to it (a copy of R3) is the tangent space at that point, or alternatively the fiber
of the tangent bundle at that point. In this terminology a vector field in R? is
a map from R? into the tangent bundle, i.e. an assignment of a single 3-vector
to every point of R3.

The term “tangent” is being used here because of intuition provided by
dynamics. The definition (2) of a velocity as derivative of position suggests this
usage.

For a manifold M C R? we can similarly define the tangent bundle T M of
the manifold. Locally, T.M looks like a piece of R3 x R3, but it is interesting that
in general we cannot assign vectors on a manifold in such a way that they vary
continuously on the manifold. Such singular behavior means that we cannot in
general write the manifold’s tangent bundle as a product. The simplest example
of this is the manifold in R?® which is the surface of a sphere. The question is, can
we assign vectors in R? arbitrarily to each point of the sphere while maintaining
continuity? The counterexample is to take vectors which have the same nonzero
length and which are everywhere tangent to the surface of the sphere. Then we
have established (after a trivial dilation) a map of the surface of the sphere into
itself. If this map is continuous as we assert, the Brouwer fixed point theorem
asserts that there must a fixed point. But this is impossible here since the
tangent and position vectors are orthogonal. This result is a special case of an
interesting body of theory concerning the global properties of tangent bundles
of manifolds.

A more picturesque view of this particular result is that the horizontal wind
velocity on the surface of a planet must always vanish at one point (at least).



2.1 Transport of vector fields

Our object now is to discuss the action of a diffeomorphism on a vector field.
Since the diffeomorphism is simply a reshuffling of points, the way in which
the attached vectors change under this reshuffling is completely open. This
is where the reference to “tangent” in the tangent bundle becomes important.
We want to consider the mapping of vector fields which are generated in a
special way, namely, as tangent vectors to a curve C, parametrized say by s:
C = {g(s)|s1 < s < s2}. Consider a point gy = g(so) on this curve and let vq
be the tangent vector to C' at go, i.e. vo = g'(s0). A diffeomorphism y = F(x)
now acts on the points of the curve. The points of the mapped curve are now
F(g(s)). We now define the transport of v to be the tangent vector of the new
curve with respect to the parameter s. Thus, by the chain rule,

d

ds
where J;; = gg] is the Jacobian of the diffeomorphism. We thus see that
this kind of transport is exactly the same as the transport of what we called
“material vector field” in the first semester. That is, a vector field is material
if it is proportional to the differential ds on any field line. Material vector
fields are usually referred to as invariant fields in the topological setting. The
picturesque term is to say that the lines are “frozen into the fluid”.

By the way, what we call “field lines” , i.e. the integral curves of

F(g(5)ls=s0 = JV0, 3)

L — (4)
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is often translated as the one-dimensional foliation of the vector field.

Once we have this idea of transport of a vector field, we can talk about it’s
action symbolically. If F' is a diffeomorphism and v a vector field, its transport
by F is written F,.(v), and is called the push forward of v. The pull-back
of v is defined as the push forward of v under F~!, and is written F*(v).
Similar symbols apply to the a time-t diffeomorphism of a flow, usually written
as ¢;. A material vector field v has the property that v(¢;x) = ¢, v(x).
This is mathematically equivalent to the Cauchy representation of vorticity, for
example, recall w;(x) = Ji;(a, t)wo;(a).

2.2 Lie derivatives

Lie derivatives are operations involving two vector fields. Consider the vector
fields u, v, both of which are independent of time. Think of these as steady
flows. Let the flow u have the time-t map ¢,. The Lie derivative of v with
respect to u is defined as

d(97v)
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Note that this involves the pull back. There are two things going on here, the
flow u is moving the base points, and the attached vectors are being transported.
This operation in Euclidean space is illustrated in the following diagram:
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Figure 1: Computing the Lie derivative. The curved lines are streamlines of
the flow u.

The straight vectors are differential elements dg, see text. The point C'is the
basepoint x and C'D = dg(x) is the vector observed at this base point at time
t. Since we will consider push forward transport rather than pull back, we are
going to compute the negative of the Lie derivative. Now AB = dg(x —u(x)dt),
and by vector transport we have AC = u(x)dt and BD = u(x+dg(x))dt. Then
by vector algebra

dg(x)|t+ar = dg(x — u(x)dt) + u(x + dg(x))dt — u(x)dt. (6)
Thus
dg(x)|t+ar — dglt = [-u- Vdg + dg - Vu]dt. (7)

With dg/ds = v we get the result that the Lie derivative is the rate of change
of the vector v observed to be occuring at the point x under reversal of the flow
field u. As a direct calculation using our symbols,

d 8(}5:%1 - 8(}57t$1‘ 8’Uj 8 8
E[ 833]- Uy (X)] t=0 [ 833]' ]t:ouk 0Ty +; 833]' [3t (b*t‘rl] t=0
=u-Vv—-v-Vu (8)
The Lie derivative is alternatively written as the Lie bracket [u,v]. Note
that [v,u] = —[u, v]. The Lie bracket also satisfies the Jacobi identity
[[w, v], W]+ [[v, W], u] + [[w, u], v] = 0. 9)

Example 1 In steady Euler flow of a fluid of constant density [u,w] = 0, where
w =V xu is the vorticity field. The idea of a fluid being “frozen into the fluid”
involves Lie differentiation. Minus the Lie derivative (i.e. the observed change
of the vector at a point x, must then be in fact equal to the partial derivative with
respect to time of the of the (in general time-dependent) vector field at the point
x. Thus v(x,t) is frozen into a fluid with velocity field u(x,t) provided that
vi + [u,v] = 0. Note that time is a parameter in the flows in the Lie bracket.
The Lie derivative is computed for each time.

Problem 1 Verify (9).

2.3 Lie Groups

A Lie group is a set of smooth transformations of a smooth manifold which sat-
isfy the group properties: (i) For every two transformations f, g the composition
f og (where first g, then f is applied) is in the set; (ii) For every f in the set,
the inverse transformation f~! is in the set. Thus every Lie group contains the
identity transformation e which does nothing to the manifold.



The tangent space for the manifold may here be described as the tangent
space of the group evaluated at the identity, and is called the vector space of the
Lie algebra associated with the group. Equipping this vector space with the Lie
bracket [u, v], we obtain the Lie algebra of the Lie group.

Example 2 The Lie group corresponding to rigid rotation of bodies in R3 is
the rotation group SO(3). The corresponding Lie algebra is that of the skew-
symmetric 3 X 3 matrices. Such matrices define the angular momentum vector.
The corresponding Lie derivative is the cross product of these associated vectors.

Example 3 The volume-preserving diffeomorphisms of a given fluid domain D
form a Lie group, denoted by D. The vector space of the Lie algebra are the
divergence-free vector fields in D.

3 Helicity and the topology of vortex lines and
tubes

In this section we use fluid dynamics language to discuss an interesting topo-
logical invariant. We consider first an fluid of constant density filling R3. We
assume that the velocity and vorticity fields at some given time have the prop-
erty that the quantity

H = u-wdV <oo, w=Vxu. (10)
R3

We call H, following Moffatt [4], the (total) helicity of the flow. This quantity
is also know (for its earlier introduction by Hopf) as the Hopf invariant.

Theorem 1 If the fluid moves according to Euler’s equations for a perfect fluid,
then, provided fields decay sufficiently fast at oo, the helicity is a constant of the
motion.

To prove this, we compute over a sphere S C D

%_7:: Sut~w+u~wt. (11)
Now 1
w=-Vh+(uxw), h=p+ §u2, (12)
and
wi =V x (uxw). (13)

Using V- (AxB)=B:(VxA)—-A.(V xB), we obtain

‘?9_7: _ /Sv [—wh + ((u x w) x WldV, (14)



and so oM )
i 85[§(u2 —p)w —u-wu]-dS. (15)

As S grows to infinity we obtain necessary conditions on the decay of the fields
for invariance to hold. If the fluid is contained in a region D bounded by a
rigid wall 9D, it follows that u-dS = 0 but it is also necessary that w - dS
vanish there, i.e. that the vortex lines not penetrate the boundary. This is not
in general a condition that will be satisfied at a rigid boundary.

Suppose now that we consider a subset V' C D which moves with the fluid.
Let Hy be the helicity within this region. Then

d:;—tv_/VVp~w+(w-Vu)'udV—/VV'[(U2/2_p)w]dv’ (16)

We see that if w-dS = 0 instantaneously at the boundary of V', then the helicity
is invariant. This is the real importance of this invariant, since it says that any
isolated patch of vorticity (bounded by a material surface of vortex lines) posses
a helicity invariant.

Problem 2 A divergence-free field can be defined as u = oV + Vo, where
a, B, ¢ are smooth functions andV-(aV+V¢) = 0. Show that if these functions
decay sufficiently rapidly at infinity then this field has zero total helicity H.

3.1 Discrete vortex tubes

An important example of a simple moving region V' of the kind just described
is that occupied by a closed vortex tube. Taking the tube to be so thin that it
may be approximated as a closed curve C' carrying a fixed circulation « (which
can be measured by carrying out a circulation integral about any simple closed
path C’ which encircles the tube once), we see that the helicity integral here is
just "¢, where I'¢ is the circulation integral for C, I'c = fc u - ds. If there
is no other vorticity present, I'c = 0. If there are other vortex tubes, but none
penetrate a surface having C' as its boundary, then by Stokes theorem applied
to that surface we again have I'c = 0. However if there is another vortex tube
C" with circulation ~,, which penetrates the surface associated with C, then
I'c =~ and the helicity computed over the region occupied by C' is yv'.

The configuration of two closed vortex tubes shown in Figure 2 illustrates
this situation. When as shown the two tubes are linked, the total helicity over
both tubes is 274" in the case shown. I the sense of one of the linked tubes is
reversed, the total helicity is —2+4. If the tubes are not linked the total helicity
is zero.

C C

(@) (b) (©)



Figure 2: The helicity of the two tubes is (a) 0, (b)2yv/, (¢)—27y'. Here
v, are the circulations carried by the tubes C,C".

In general a closed vortex tube which is knotted, in the sense that it cannot
be continuously deformed into a circle, can be decomposed into two or more
linked but unknotted loops. We illustrate this in Figure 3, where we prove that
the total helicity of the tube shown is +2 times the tube circulation.

s

Figure 3: A knotted vortex tube has helicity twice the tube circulation.

We shall say that the two rings of Figure 2(a) are each an unknot. The
structure in Figure 3 is a knot, since it cannot be deformed smoothly into an
unknot. We say that the two unknots in Figure 2(b) are linked. Any knot is
equivalent is equivalent as in Figure 2 to a structure consisting of linked unknots
One slight ambiguity: we have to decide whether or not the reduction to linked
unknots continues as in Figure 3(c) to links which encircle on once, i.e. are
simply linked. Clearly the surgery of Figure 3(c¢) can proceed to a structure of
simply linked rings.

Once we have this structure, we see that the helicity will have the form

H= Z”yfyjaij, (17)
ij
where a;;, defined as the circulation about the ith ring due to the presence
of the jth ring, is +1. If we simply state that the structure consists of linked
unknots, allowing for multiple encirclings, then the a;; are nonzero integers.
Since the computation of helicity of tubes is thus reduced to computation
for pairs of linked unknots, we can easily express the o;; as an integral based
upon the Biot-Savart law. Recall that the velocity field due to the jth ring is
given by

1 it
u(x) = —7{ Mds/, y=x-x". (18)
Ar Jo,  Iyl?

Thus the circulation about the ¢ ring may be computed from this and thus we

obtain ) (t x t)
y-(t X /
i = — ———~ds'ds. 19
Q5 A7 %% |y|3 sas ( )

Consider two simply-linked unknots as in Figure 2(b,c). We define the Gauss



linking number of the structure by

txt')
LN ds'd 2
“ 4#7{74 ly? > (20)

where the integrals are in the direction of the orientation of the tubes, s applying
to one tube and s’ to the other. The GLN is thus +1 while we have that
the helicity is +2v9’. Thus the GLN of a pair of simply linked unknots (one
encircling) is +£1. The GLN in general can be used to determine the number
of time one closed curve winds around a second closed curve. If we consider
an arbitrary structure K of vortex tubes with various knots and links, carrying
various circulations, the helicity of the structure is similarly given by

(t xt)
T T " /ds'd 21
- = f ]4 W, s, (21)

but now the integrals with respect to both s and s’, so structures are counted
twice in the same way that the factor of 2 appeared for simple linked rings.

It is important to remark that, while the helicity is clearly saying something
about the “tangleness” of the vortex tubes, it by no means provides complete
information about a knot. A case in point are the “Borromean rings”, see page
132 of [1]. This structure consists of three entangled rings, the helicity of any
two being zero, and the total helicity of the structure is zero, yet the rings cannot
be disentangled without breaking a ring. Higher order topological invariants are
needed to obtain more information about the properties of a knot. There are
an infinite hierarchy of topological invariants of increasing complexity, but they
are not easily used in the fluid-dynamical context.

3.2 Beltrami fields

Consider a constant density fluid flow in a domain D with finite nonzero helicity
H. What is the minimum value of the integral | D w? dV that such a flow can
have? We first note that by the Schwarz inequality

[/Dw~udV]2g/Du2dv/Dw2dV (22)

Now the Poincaré inequality states that for any domain D there is a length
L such that [, w? dV > L™? [, u® dV where u as any flow in D satisfying
u-dS =0 on dD. Thus we have that the helicity bounds [, w? dV,

/w2dV2L*1|/ w-udV]. (23)
D D

This inequality becomes an equality if there exists a flow u contained in D
such that w = Au, A\ = L~!. Flows with vorticity and velocity everywhere
parallel vectors are called Beltrami flows. In the case here we have these vectors
proportional by a constant. The eigenvalue problem of solving w = Au in D



with zero normal velocity on 0D leads to eigenvalues and the minimum of the
absolute values of these eigenvalues gives L™1.

Beltrami fields have many remarkable properties. Steady fields of this type,
having the general form w = f(x)u,u- Vf = 0, are incompressible Euler flows
with nontrivial vorticity. They offer the only solutions which have chaotic La-
grangian particle paths, as we shall see below.

One way to construct a large class of Beltrami fields is to set

u=AVxA+VxVxA, (24)
where A is a constant. Taking the curl,
Vxu=AVxVxA-VxVA. (25)

Thus if V2A = —)\2A, we see that V x u = Au. For example in R3, A =
ir~1sin(\r) determines a Beltrami field. An example with non-constant \ is
u = (y, —Yz, W(1)) where (z,y) satisfies V*p = F(¢p). Then V x u =
(W'y, —W'ty, —F). Then, if F = —WW’, we obtain a Beltrami field with
A=W ().

4 Steady Euler flows

We take the density as unity and consider the solution of
u-Vu+Vp=0, V-u=0, (26)

in a compact domain D bounded by an analytic surface D. If the first equation
is written in the alternate form

1
uxqu:VH,H:p+§u2, (27)

we exhibit the Bernoulli function H(x). Since clearly
u-VH=0, Vxu-VH =0, (28)

we see that the flow lines of both velocity and vorticity line in the surfaces H =
constant. Note that this statement carries weight only where such surfaces exist,
i.e. H is not constant. The picture to have is that H is a smooth function which
foliates the domain into surfaces of constant H, Bernoulli surfaces say. These
Bernoulli surfaces are oriented by the vector VH. In the seminal paper [5],
Arnold proved the following result:

Theorem 2 Suppose that u is an analytic steady Euler flow in D which is not
everywhere collinear with its curl. Then the field lines of the flow lie either in
invariant tori, or else on invariant surfaces diffeomorphic to an annulus. On
the tori the flow lines are either all closed or all dense, and on each annulus all
flow lines are closed.

10



The two types of fluid structures are typified by nested tori on which flow
lines are twisted about without being knotted, and annular motions in which
every fluid particle moves on a circular orbit about a fixed axis of symmetry (but
keep in mind we admit diffeomorphic equivalents to these field lines). This is a
remarkable theorem, because if you think about an arbitrary domain it would
seem very difficult to get a flow decomposable in this way to fit inside it and
still satisfy (26). Apart from questions of stability, which we disregard here, the
matter at hand is whether or not a solution of (26) tends to have a structure
foliated by the Bernoulli surfaces.

The exceptional case H =constant of course can occur, leading to Beltrami
flows! But we can equally well question the relevance of Beltrami flows to
solutions obtained in a compact domain. However it is interesting that for
the question of global regularity of solutions of the IVP, the possible regularity
is thought to be linked to the depletion of nonlinearity caused by u x V x u
becoming small in (27).

Even if V x u = Au we necessarily have u- VI and so also A=} (V xu)- V=
0, so if A(x) foliates D into surfaces A = constant, we are back the previous
situation. Thus actually the only alternative to the structures of theorem (2)
is the case A = constant. (The existence of regions of this kind in real Euler
flows, where velocity and vorticity are locally proportional by a constant, is
controversial.)

Nevertheless flows of this kind, i.e. where u is an eigenfunction of the curl
operator, are easily constructed. The method described above is one example of
a class of these flows. Another approach is to look for spatially periodic flows
in R?, i.e. flows on the torus 72, of this kind. An interesting example is the
family of ABC flows,

u= (Asinz+ Ccosy, Bsinz + Acosz,Csiny + Bcosz). (29)

The most symmetric case is A = B = C = 1. This flow is replete with invariant
tori, which thread through a lattice of stagnation points (where u = 0). However
near the boundaries of these foliated regions there is a region of finite volume in
which a single field line is dense on T3. If the square of one of the parameters
exceeds the sum of the squares of the other two A% > B2 4 C? for example,
the stagnation point vanish and the region of chaotic behavior becomes much
larger.

Problem 3 Using Matlab ODE routines compute the Lagrangian trajectories
of an ABC flow, and plot the intersections of orbits with a plane x,y, or z =
0 mod 27. Try various starting points with A> > B? + C?, and also with
A=B=C=1.

11



4.1 An extremal property

The steady Euler flows in D are extremals of the following minimization prob-
lem: Find the minimum kinetic energy

1
E=— / u?dV (30)
2Jp

obtained from a given flow u by the action of volume-preserving diffeomor-
phisms on of the domain D.

To prove this, observe that the infinitesimal diffeomorphism defined by a
divergence—free vector field n will act to change u by an amount

du=[pul=n-Vu—u-Vnp=Vxuxn (31)

Thus
5E:/u~[V><u><n]dV, (32)
D

but this can be written as

5E:/D[—V~[u><(uxn)]+V><u~(u><n)]dV

:/D[—V-[u-nu—u2n]+n~[(v><u)Xu]]dV. (33)

The first term integrates to zero because of the tangency condition on dD. Since
7 is an arbitrary volume-preserving diffeomorphism, the extremal flows must
be such that (V x u) x u is the gradient of some function, —H say, and thus
must satisfy [u,w] =0, and we are done.

We remark that in this first variation of u we can think of du as tu for small
t. Higher variations come from solving

du

= 4

o = (34)
as a formal power series in ¢, u(x,t) = u(x) + tu; + (#*/2)uz + .... Thus
u = [775 11] and up = [775 ul] = [775 [775 11]]

In particular we can compute the second variation of E as
52E:/ (|6u* +u-§%u)dV (35)
D
We insert u; = du and uy = 6%u to obtain, after use of the divergence theorem

52E — /D ([, w) - [, 0] + (7 x w) - [, u] ). (36)

The second variation is of importance in discussing stability of steady flows.

12



4.2 Two dimensions

In R? the energy minimization becomes a minimization of
E:/ P2+ 7 dS (37)
D

where v is the stream function; the extremals then satisfy Euler’s equations
in the form Vi x VV?) = 0. Thus a problem of the form V2 = F(1)
arises, stating that a fixed value of the vorticity can be associated with any
given streamline. A wide variety of such flows presumably exist, and can in
principle be obtained by energy minimization. Choose an initial streamfunction
1y of desired topology. Take for example the flow within a circular region
with streamlines as in Figure 4(a), not an Euler flow. We want to obtain an
Euler flow from it by minimizing energy, subjecting the flow to area—preserving
diffeomorphisms.

e\
(e IB(S))
)

o .

Figure 4: Energy minimization with one critical point of .

We shall prove that this minimization will lead to concentric circular stream-
lines with the area of the region between streamlines with any two values of ¥
being preserved.

We will show this by induction from the critical point outwards. Near the
critical point of the starting flow, the streamfunction must have the form ¢ =
i—: + g—z bounding an area mwab, a, b being small, on the boundary of which ¢ = 1
(this value being immaterial). Let the values of a, b after minimization be o', .
The contribution to F within this region is easily calculated to be w(b/a+ a/b),
which is minimized by taking a’ = b’ = v/ab to preserve area.

Now assume that the regions bounded by two neighboring streamlines are
examined in sequence, building up a circular “onion” out to the pair shown
bounding the shaded region of Figure 4(a). We want to show that the contribu-
tion to the energy from this region will simply add another layer to our circular
onion. Applied to this region, our diffeomorphism will preserve area, and the
object is to minimize energy. Let the values of the bounding streamlines be v
and ¥ + Atp. Since Ay = constant, we see that the width of the layer, An(s)
say, satisfies ¢An = 1) = constant where ¢*¢2 + ¢ is the square of the speed.

13



Thus the constancy of area under the diffeomorphism requires that

7{ Ands = A 7{ %S (38)

be constant. Subject to this constraint, we wish to minimize the contribution
to E, given by

AE = 7{ 2 Ands = 6 7{ gds. (39)

Introduction a constant Lagrange multiplier ;1 , we minimize

j{ (l - pq) ds, (40)
q

and obtain ¢ = constant, hence An = constant, hence we get another annular
layer to our onion, and we have established that the minimizing pattern is that
of Figure 4(b).

We interject here a comment regarding the role of small diffusion in the 2D
case and in particular for the topology just described. In questions of topology
of steady inviscid flows there naturally arises the question of whether or not the
pattern obtained is “stable” under the addition of small viscosity. By this we
mean to imply that the Euler flow is a close approximation to some solution
of the Navier-Stokes equations if the viscosity is sufficiently small, and that
this viscous solution should not be topologically distinct except perhaps is thin
boundary layers. We refer here simply to existence of solutions, which may or
may not be physically stable steady flows. There is thus a hierarchy to consider:
Stable NS limits C NS limits C Euler minimizers.

Consider an arbitrary simply-connected domain in 2D and let the stream-
function have a single critical point as in Figure 4(a). After energy minimization
to an Euler flow, we have a similar topology, with vorticity now constant on ev-
ery streamline. What will small viscosity do to this flow? Omne problem here
that, if the non-slip condition is no applied to the fluid at 0D, the flow will sim-
ply decay to zero. Hence to pose the question we need to maintain the flow and
we will assume that the speed of the minimizer on 9D is applied as a boundary
value for the Navier-Stokes flow. It then turns out that the topology does not
change in this case, but there is a dynamical effect on the vorticity, on a time
scale of order L? /v where L is a diameter of D. Prandtl argued that ultimately
the Euler flow must one of globally constant vorticity. To see this, we take the
resulting steady solution of the Navier-Stokes equations (assuming its existence,
and disregarding stability issues) and consider

Iy = V- jwu—vVw]dS =0, (41)
Dy

where Dy, is the region within streamline with streamfunction value 1. Since u
is tangent to 0D, we see that necessarily

1/7{ a—wds =0. (42)
9]

Dy 371
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Now we are assuming very small viscosity, but the factor v here can nevertheless
be dropped. On the other hand we expect the Navier-Stokes solution to be close
to an Euler flow, in the sense that w =~ w(1). Thus (42) becomes

ow dw
v —ds ~ — qds = 0, 43
ﬁDw on dy 9Dy (43)

and the only reasonable way to achieve this is to set g—‘“ =0.

This is an interesting argument, which is far from being a rigorous proof, but
is seems to be well supported by numerical studies. The “theorem” ws rediscov-
ered by Batchelor in [6] and “Prandtl-Batchelor” theory provides techniques for
selecting among candidate minimizers, those Euler flows which are in fact formal
asymptotic approximations to steady solutions of the Navier-Stokes equations
at large Reynolds number. Further application of this theory is described in [7].

What happens under minimization for 2D topologies more complex than that
of Figure 47 Imagine the level lines of a smooth 1 function with an arbitrary
landscape

Figure 5: Energy minimization with x-points.

In general the minimization will not preserve the smoothness. We see in
Figure 5 how an Xx-type critical point can split to bring oppositely direction
velocity into contact at a discontinuity. The role of small viscosity in smoothing
this discontinuity is obviously an important issue, and again the question must
be studied of the survival of the topology in the Navier-Stokes problem.

4.3 Minimization in 3D
4.3.1 An analogous magnetostatic problem

We want to consider now a more general fluid allowing for conduction of electric
currents. We take the fluid to be a “perfect” conductor, meaning that there is
no dissipation involved with the flow of electric currents. We assume however
that the fluid is viscous. Our aim is introduce a class of static magnetic fields
that are mathematically equivalent to the class of steady Euler flows ( for com-
parable boundary conditions, as we shall see). These magneto-static fields will
be obtained under the condition that the fluid be a rest.
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The equations of magnetohydrodynamics (MHD), under the condition of
perfect conductivity, are

plu; +u-Vu)+Vp—puV?u=J xB, J =V x B, (44)
B:; =V x (ux B), (45)
Vxu=VxB=0. (46)

Here B is the magnetic field and J the current field. We contain this fluid with
a volume D with
u=0,B-N=0, xedD. (47)

The latter condition states that magnetic field lines do not penetrate the bound-
ary 0D.

If we dot (44) with u and dot (45) with B and add the two equations, some
vector manipulation, the divergence theorem, and (46) lead to

d

E(EK + Em) = @, (48)
where Ex = & [, u?dV is the total kinetic energy, Ey = § [, B2dV the total
magnetic energy, and ® is the rate of viscous dissipation in D.

Problem 4 Verify (48).

Moffatt [8] has argued as follows: since the total energy is decreasing so long
as u # 0, if the total energy is known to be bounded from below, we are assured
that it must tend to a limit for large times. Assume for the moment that the
process terminates with u = 0. In this case we are left with a solution to the
magnetostatic problem

Vp+Bx (VxB)=0,V-B=0. (49)

This is analogous to an Euler flow under the identification of —p with the
Bernoulli function H, and B with the velocity field. ( It is interesting that
(45) states that “B is frozen into the fluid” and so in this equation B is analo-
gous to the vorticity. The steady analog is different from that suggested by the
behavior of the fields under diffeomorphisms.)

Moffatt then proposes to exploit this to obtain steady Euler flows of non-
trivial topology, by imposing an initial magnetic field with non-zero total helicity
H. We have seen above that under this condition E; is indeed bounded below.
Thus the above mimimization process should be accessible.

Problem 5 Show that a similar approach to energy minimization is possible if
(44) is replaced by

p(ug+u-Vu)+ Vp+ ku=J x B, (50)

where k is a positive constant. This correspond to assuming the fluid moves in
a porous medium with porosity k.
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Thus the idea is that the total energy continues to drop as the fluid moves
a reshuffles the magnetic field lines. In view of (45), the topology of the lines is
preserved since they move with the fluid. Any excess magnetic energy should
be converted to kinetic energy to move the lines toward a configuration of lower
Ejr. Eventually the fluid comes to rest with the magnetic field in an “Euler
flow” configuration with minimal energy.

While this scenario is appealing, it masks a number of very important math-
ematical difficulties. The main problem is that there is no control over the
smoothness of the liming magnetic field. The discontinuity emerging in Figure
5 is a pale shadow of what can happen with the chaotic structure allowed in
3D. It is conceivable that the limiting B is differentiable almost nowhere. For
example, take an initial condition that has some chaotic structure but is not
a Beltrami field. If the limiting field obtained under the relaxation of the flow
were smooth, we know it must decompose into Arnolds’s tori and annuli. But
this is impossible because of the chaotic structure. Then if smooth it would have
to be a smooth Beltrami field with A = constant, e.g. an ABC flow, but such
solutions are rare and are not likely to be compatible with boundary conditions.

Thus we have a huge gap in the theory. On the other hand we can expel this
problem by admitting as suitable weak solutions all limits obtained under the
relaxation process. It is in this sense that Moffatt’s idea can survive. The topol-
ogy of the initial condition is retained, but any reasonable kind of smoothness
is lost.

This may be an acceptable mathematical framework in which to construct
weak steady solutions of Euler’s equations, but it is catastrophic from the phys-
ical standpoint. The reason is the loss of topological structure which would
occur in the presence of viscosity, irrespective of how small it may be. In the
magnetic context, the same can be said with the introduction of small electric
conductivity. (It that case (45) is modified by a term exactly analogous to the
viscous term in the vorticity equation, see [7].)

We remark that there is an interesting physical problem where these ideas
appear to be very relevant— namely in the flares and microflares of the solar
magnetic field. We summarize the phenomena here; some further details are
given in [9]. Solar flares are rapid discharges occurring in the upper solar pho-
tosphere, a layer thickness 500 km, and above that in the lower chromosphere,
a layer of thickness 2.5 x 10% m. Above that is the solar corona, extending far
out into space and notable for the location of solar prominences. Solar flares are
believed to be associated with magnetic reconnection and hence directly related
to the change of field topology. One of the major unexplained properties of
solar structure is the high temperature of the corona, ~ 10 °K, compared with
~ 4300 °K in the photosphere . Eugene Parker has proposed that the heating
is largely due to microflares involving rearrangement of magnetic topology. The
prominences may be viewed as arched tubes of magnetic flux, extending far into
the corona but with their ends anchored in turbulent fluid of high electrical con-
ductivity. As the field lines are entangled by the fluid motions at their points
of attachment, the tubes try to relax to a minimum energy configuration, much
as in Moffatts’s relaxation problem, and if it is hypothesized that the result-
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ing minimized is non-smooth, the microflares would result from finite electrical
conductivity within the coronal gas.

5 Vortex stretching and global regularity of the
IVP

The question of global regularity of solution of the IVP for Euler’s equations is
an important mathematical topic, which is perhaps not unrelated to topological
issues, a point we wish to develop in this section. In two space dimensions it is
known that smooth initial data results in globally smooth solutions, see [10] p.
116. This is essentially a result of material property of the scalar vorticity in
2D. In 3D no analogous results are known, and the question of global regularity
remains open.

Although there is considerable disagreement on this point, many theoretical
fluid dynamicists consider “Euler blow-up” a definite possibility. By blow-up
we here mean finite time blow-up, the loss of the regularity of the initial data in
finite time. A crude argument for such a behavior replaces the vorticity equation
in 3D,

d
H“; —u- Vu, (51)
by
D
d—;" = |wlw. (52)

The fact that g;i and w;w;(|w| ™! are totally different object notwithstanding,

(52) is dimensionally consistent and remains quadratic in the derivatives of the
velocity. The dot product of (52) with w then gives the scalar equation

D|w| — |w|2'

D1 (53)

This has solution 1

|w(a, 0)]

Thus, vorticity first becomes infinite if we follow the fluid particle corresponding
to the initial point of maximum modulus of the vorticity, the time of blow-up
being ¢t* = one over the modulus of vorticity at this point.

Underlying this kind of estimation is the elementary invariant scaling of
Euler’s equations,

wx(t,a),t) = ( —t)7h (54)

u—Uux— Xx,t > Tt/U, T = X/U, (55)

which indicates that any velocity derivative scales like 1/¢.
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5.1 The Beale-Kato-Majda condition

While the result (54) completely bypasses the kinematics of vorticity in 3D, it
is interesting that it is consistent with one of the few rigorous constraints on
blow-up which has been given, namely the Beale-Kato-Majda condition (see
[11], and also [10], chapts. 3 and 5):

Theorem 3 Suppose that t* is the largest time of existence of a smooth solution
of the IVP for Euler’s equations in R®. Then 2

t
/ max |w|(s)ds — oo, ast — t*. (56)
0

Remark: We note in passing that, under the transformation (55), Du/Dt —
(U?/X)Du/Dt while the viscous term of the Navier-Stokes equation obeys
vV?*u — (U/X?)uV?u. These are the same only if U = X~ and so T = X?.
Leray long ago noted that on this last result admits Navier-Stokes solutions of

the form )

Vit =1t
necessarily also compatible with (56), but now suggestive of blow-up of a viscous
flow. While most fluid dynamicists do not consider the blow-up of viscous flow

( which would lead to infinite velocity of the above scaling were correct) as
physically plausible, the mathematicians have not ruled out such a possibility.

U(x/VE — 1), (57)

u=

Problem 6 What is the form of the vorticity equation if the Leray scaling is
assumed?

The proof of (56) involves some simple and direct estimates, which we sum-
marize below, and one very technical estimate, whose proof we shall skip. The
Sobolov space H™(R3)T consists of L?(R?) functions whose derivatives up to
and included order m are also L?. The norm |lu,, is the square root of the
sum of the squares of v and all derivatives through order m. For vectors the
Euclidan norm squared replaces the square.

First, it is easy to show that, for any m, an H™ Euler flow in R? satisies

df|ul|m

o < ¢ max | Vul||u|m. (58)

Here ¢, is some constant. To see this for m = 0, dot the momentum equation
with u and integrate over R3, using the divergence theorem. The derivatives of
u can be treated analogously, by repeated integration by parts.

Gronwall’s lemma infers from (58) a bound on ||u|,,:

Tcmmax Vu|d
(- Tl < (-, 0)[lmes vuldt, (59)

2As is shsown in [10], in the following one may substitute, in place of max |w|(t), either
max;; |aa—7;1 |(t) or max |t;t; %—Zﬂ(t), where t is the unit direction vector of the vorticity field.
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Turning now to the vorticity equation, a differential inequality is readily
derived for the L? norm of the vorticity, ||w|o. Applying Grénwall’s lemma to
it yields the inequality

TcmaxVud
(- T)llo < (-, 0)oeo cmx IV (60)

A very technical potential theory estimate then bridges the gap between
max |Vu| and max |w|:

max |Vu| < C(1+ in"|lulls + InT[|w]o) (1 + max |w|), (61)

where Intz vanishes for z < 1. See [10] for the derivation of (61). Now we
insert (59) with m = 3 and (60) into (61) to obtain

t
max [Vul(t) < Cy[1 +/ max [Vu(-, s)|ds] (1 + max |w(-, t)]). (62)
0
Again applying Gronwall’s lemma,
t ¢ .
1 +/ max |[Vu(:, s)|ds < 2€C(t+f0 max jw(-,s)lds) (63)
0

Returning now to (59) and using (63)

t
C(t+ | max|w(-,s)|ds
25¢ Jy mexiecaldn

Hu('aT)Hm < Hu('aO)Hmecm ] (64)

t
Thus we bet a bound on the H,, norm so long as C(Hfo mas|w(9)14%) 16 hounded.

We have looked here at the details of ths BKM condition in order to em-
phasize that the mathematics uses the Euler equations only to obtain simple
energy estimates of derivatives of velocity. (the estimate (61) applies to any
divergenc-free vector field and its curl.) All of the complexity of the vorticity
kinematics embodied in the Biot-Savart Law is expelled from consideration, so
that one is working rigorously at a level of apprxomation analogous to (53). It
is therefore perhaps not too surprising that the BKM condition is consistent
with (54).

The question we address here is, what is the next level of approximation
(above simple energy estimates) that might provide enough of a description of
the vorticity to settle the matter of global regularity. It is possible that the nest
level is one of topological constraints, a possibility that accounts for inclusion
of this topic in these notes.

5.2 Infinite kinetic solutions exhibiting singularities

If you believe in Euler blow-up, it is comforting to find supporting solutions,
however trivial. The simplest one I know of is

u= Ax/(t" —t), (65)
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where A is any constant symmetric matrix with zero trace. The corresponding
pressure, making this an Euler flow, is

pZ—%X~(A—|—A2)~X/(t*—t)2, (66)

In R3 this flow has infinite kinetic energy for all time, and blows up everywhere
simultaneously. Also, clearly solutions of this type can be potential flows (A a
diagonal matrix for example) and so have zero vorticity! Moreover (see below)
they also exist in two-dimensions, where we know regularity prevails!

While such solutions of this kind will never settle the regularity issue, they
have generated a certain amount of interest. The reason for this is that more
structure can be introduced so that the vortical field becomes more interesting,
and while the kinetic energy remains infinite the hope is raised that the solutions
might be a “local” approximation to a singularity occurring in a Euler flow of
finite kinetic energy.

For example, J.T Stuart [12] introduced a class of solutions of the form

(’U,,’U,’LU) = (f(x,t),yg(x,t),zh(x,t)). (67)

A related two-dimensional example [13] is

(u,0) = (f(2, 1), =y fa (2, 1)). (68)

We will here focus on (68) since it illustrates most easily the way these simple
solutions mimic 3D vorticity dynamics. Since ¢ = yf(x,t) is the streamfunction
for this flow, we may imagine a flow in the semi-infinite channel 0 < x < L,y >
0, and to make the boundary of the channel a streamline we impose

f(0,t) = f(L,t) =0. (69)

We also impose the initial condition f(z,0) = fo(x). Putting (68) in the 2D
vorticity equation we obtain
Lfre =0 (70)

where the operator £ is defined on any function ¢(z,t) by
Lg=q:+[f.ql. (71)

Here [f,q] = fq. — qf. is the Lie bracket. We also introduce a 1D Lagrangian

variable z(t, a),
dx
- = f(z,t), x(0,a)=a, (72)

and let J = % be its Jacobian. Differentiating (72) we have, if ¢ = q; + fqu,
J = fuJ,ie. £LJ=0. Then (70) may be “solved” in the form

fra(x(t, 2),t) = f5(a)J(a,1). (73)
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Note this is analogous to the Cauchy solution of the vorticity equation. There
is also an analog to the Biot-Savart integral, as we now show. Multiply (73) by
J, integrate with respect to a, and set s = 2f;(a) to obtain

2f, = / J2ds. (74)

Note that now the initial function has been absorbed into a new independent
variable, s. Now f, = J/J, and if if we define $H = J/J we obtain the IVP

Hy=ef, H(s,0)=0. (75)

This is Liouville’s equation, a general solution of which can be given in closed
form, see [14]. However, we need only find a particular solution of this equation.
To insure that our transformation a — s is 1-1 we now make the technical
assumption that f # 0, although this is not actually necessary.

Thus for our purposes it is sufficient to note that LF,, = 0 is solved by the
time-independent function f = Asin Bx for any constants A, S. With this f we
may evaluate J and express the answer in terms of s to obtain

J = [cosh(kt) — (s/2k)sinh(kt)] !, k = AB. (76)
Problem 7 Verify (76).

In order to satisfy the boundary conditions on f we need an arbitrary function
of time, not present in (76). However we can use the following fact: if H(s,t)
is a solution of Liouville’s equation, then so is H(s,7) = In(7(t)) + H(s, T) for
any 7(t). We thus obtain the general solution
1
T2
J = . 7
cosh(kt) — (s/2k) sinh(kT) (")

Since fOL Jda = L we obtain a differential equation for 7(¢) in the form

L
da
/0 cosh(k7) — (s(a)/2k) sinh (k1)
The choice of k is immaterial so long as this last integral exists. Once 7 is found,

(77) may be integrated to find f, and then f.
As an example consider

=

7 =L (78)

1
fo= 5&(2—&), L=2. (79)
There results ) -
2(e* T — =¥ g sinhT. 2
t) = —-=
o = [ - e (%0)

t(r) = /07' u?/ sinh? (u)du. (81)

Blow-up occurs when 7 = co and thus where

v—1

1
t =t = t(c0) :/ o g, éwQ. (82)
0
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5.3 The search for a nontrivial singularity

The infinite energy solutions are sufficiently suggestive to have spawned many
numerical experiments of the 3D IVP. One example with an interesting set of
symmetries is the initial velocity,

u = [siny + sin z, sin z + sin z, sinx 4 sin y]. (83)

The most symmetric candidate that has been examined is axisymmetric flow
with swirl, i.e. velocity fields of the form (u.(r, ), u,(r, z), ug(r, 2)). If the flow
is confined to a thin annulus R < r < R+Ar, Euler’s equations may be shown to
reduce to those of Boussinesq convection in two dimensions [15]. In Boussinesq
convection the fluid flow is driven by small density variations which do not
affect the divergence-free property of the velocity. The density perturbation is
however a material scalar. Thus if p is the perturbation around a density of 1,
the equations of Boussinesq convection are (in a unit gravitational field)

Dp/Dt =0, Dw/Dt= —p,, (84)

where u = (¢, —ty),w = —V?). Again, for these models there has been
active computational experimentation, but all of the results claiming evidence
of singularity formation are subject to resolution problems. It is not easy to
establish the existence of a singularity by accurate computation.

Other approaches have focused on the self stretching of paired vortex tubes
of opposite sign. Each vortex tube advects the other, and both can be stretched
in a 3D setting. Here the resolution problems persist, but also the finite size of
the vortex tube is a problem, and as the singularity is approached the treatment
of the tube as a line breaks down. Renormalization methods have been tried
in these cases, but then the problem is losing control over the macroscopic
dynamics, even at the level of maintaining conservation of energy.

I have digressed on these analytic issues mainly to suggest that it could well
be that all evidence of singularity formation is based on an incomplete represen-
tation (analytical or geometrical) of the vorticity structure. We therefore will
look below at the stretching of vortex filaments as an exercise in geometry, with
the aim of perhaps linking the global regularity of Euler flows to the topology
of the vorticity field.

In this regard we mention some interesting recent results of Constantin et
al. concerning the vorticity structure needed to develop a singularity in finite
time [16]. They show that if the unit vector giving the vorticity direction is
sufficiently well behaved near the regions of largest vorticity, then a singularity
cannot form.

5.4 Local induction for a thin vortex tube

Before considering the interaction of distinct vortex tubes, we consider the mo-
tion induced by a thin vortex tube on itself. Let the radius of curvature of
the tube be of order L, and consider the tube to have a cross-sectional radius
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€ < L. Then there is a dominant effect of the tube which can be estimated,
with the result that the velocity V' orthogonal to the osculating plane, i.e. in
the direction of the binormal, becomes infinite as ¢/L — 0, has an expansion of
the form "

Vo~ Z—W log(e/L) + O(1) (85)

in this limit, here v being the circulation about the vortex and « the curvature.
Although the expansion can be made sensible with a careful modeling of the
tube, the fact is that a “line vortex” of fixed circulation is not a sensible object
the moment it ceases to be absolutely straight, i.e. to be the 3D extension of the
point vortex of two dimensions. It follows from the fact that the divergent term
is in the direction of the binormal, that to the first approximation self-induction
of a thin tube does not stretch the tube.

This property of vortex tubes it not significant for continuous distributions of
vorticity, wherein the field may be regarded as consisting of tubes of infinitesimal
strength. Applied to finite strength tubes some approximation is needed, the so-
called local induction hypothesis, the and the resulting theory of self-induction
of a line vortex, not involving any line stretching, has received considerable
attention.

5.5 A regularity result in 3D

Some 3D motions are sufficiently symmetric to obtain global regularity in a
manner analogous to that of 2D flows. Consider a flow with cylindrical symme-
try and no swirl. The vorticity is (0,0, wp) in (z,7,0) coordinates, and velocity
is (4, ur, 0). Let the initial vortical field wgo(z, ) be smooth, bounded, and and
supported on a region of volume V;. It follows that the support of the vorticity
at any future time has volume Vy. We further assume |r~lwgo(z,7)| < c on its
initial support.
We can estimate max (Ju|) over all space as follows (see [10]):

/ !/
max(|u|)§’i/ YXdeV/+’L/ YX ol oy —x
A Jiyi<ry Y At iyizre Y
(86)
Clearly
max (Ju]) < g%ﬁﬂw(g(z,r, )47 Ro + Vo Ry %) (87)

If we set R} = Vo, we get max (Ju|) < ¢1 maxgypp [w|, where ¢; = (1 + 4m)Ry.
Now in this Euler flow

wo(z,1,t) /1= w(ro, 20, t)e0/T0, (88)

where (z,7) and is the terminal point of a fluid particle which started at (2o, r9).
Now let R(t) be the radius of the support at time t. Then we have

dR/dt < max(u) < ¢; max(wg) < cerR. (89)
supp

By Gronwall’s lemma the radius of the support, hence the maximum vorticity,
grows at most exponentially in time.
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5.6 Interacting unknots

The previous example of global regularity applies to a flow all of whose vottex
lines remain circles for all time. This geometrical constaint is what controls the
solution and leads to global regularity.

We now consider some simple calculations for the stretching of unknots (not
necessarily circles.)

Let C be a closed vortex line, oriented so that arc length s increases in the
direction of the vorticity vector. Then

Qz%w~ds:7§|w|ds>0. (90)
c c

Lemma 1 Let w be the vorticity of an Fuler flow, defined for 0 <t <T. Then
for these times
dQ)
—EQt:27§w~du. (91)
dt C
Proof: Since a vortex line is a material invariant of the flow, a point on the line
is a Lagrangian variable x(a, t). If the Jacobian of the Lagrangian map a — x
is {Ji;}, we have

ds2 Dw; DJ;;
— = ldm—i—%u% Y da;
dt o Dt c Dt
ou; Ou;
= ——dx; i—— Jiida;. 92
ﬁwjaxjx—l-cwaxk wida; (92)
But on C we have dz; = w™'w;ds and w; g;] = w%ﬁ, so that
dQ i
—:%wiaids+%widui:27{w~du, (93)
which completes the proof.
Lemma 2
dQy  d*Q ou Ow
S D 0w Pds+2 d 2 Vpds. 4
at  dt? fiw|as| ot 74085 Vpds (94)

Thus the second derivative brings the pressure into the equation. Proof: We
need to compute D/Dt of 2w;ds; 2% . We have

Ox
Dwi . 8’[1,1 DdSJ . 8’U,j
Dt -k 8£Ck ’ Dt Sk 8£Ck ’ (95)
and .
3_;; _ 321’ o % ou; (96)
dt N 8.?61856] 8CCJ' 8CCk '
Using these results we see that two terms cancel and that
0%p Ow; Op
ids; ——— = — , 97
jiw 5 8.?618.%] C Os 8:61 5 ( )
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we obtain the stated result.
We note that the result of Lemma 1 may be written

sy ou; ou;
— id =2 ¢ www '—d
e 7{ Sjo— oz, 7{ Wiwjw 7z, s (98)
and therefore as i 9 9
-1 9 U
= Wi ds. 99
7 = e g+ s g
Now the Biot-Savart law giveus us the velocity in terms of vorticity,
1 /
u(x)=—— yXw av’, y=x-x. (100)
4T y3

Differentiating this expression as a distribution we obtain the following preinci-
pal value result for the rate of strain tensosr:
8’&1‘ + 8’U,j _ i
Or; Ox; 4m

PV/y*5[yxw’®y+y®y x w')dV'. (101)

Letting w; = wt;, we may write a complete integral for d2/dt as follows:

aQ 3

PV/wwy ’ - y(t' x t) - ydV'ds (102)
dt  2m

5.7 Interacting vortex tubes

Suppose now that the curve C'is the centerline of a vortex tube of infinitesimal
cross-section but unit flux. The length of the tube is given by

L= fct.ds. (103)

Thus il
. o
since dt is orthogonal to t. Thus
dL 1 Ou;  Ou;
— == titj(— L) ds. 1
. 2 ?i / ((?ch 8:01) (105)

If u is caused by a second closed unit vortex tube with centerline C’, we get an
equation for the rate of stretching of C' in the form

-5 /
dt 7{‘7{/ t-y(t' xt)-yds'ds. (106)

Note that we may integrate the right hand side of (106) by parts with respect
to s to obtain a simpler form,

dt 7{ 7{/ "% tg)ds'ds. (107)
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Combining two such expressions (106)we obtain

dL ar’ _
s 7{?{ P(t4t) y(t' x t)- yds'ds. (108)

This follows from interchanging primed and unprimed quantities, including the
differentiations of u.

To give an example consider the two vortex rings of radius R in « — y
plance, centered at the common z-axis on the planes z = 0, H. The lower curve
is oriented counter-clockwise from above, the upper curve clockwise. Then y =
[R(cosf—cos @), R(sinf—sin '), H] and t = (sinf, — cos ), t’ = (—sin 6, cos '),
and so we get an equation for the rate of stretching of C' in the form

dR RH [*7 cosy
dt — 4m Jo [2R2(cosy) + 1) + H2)3/2

dwa 1/) =0- 9/5 (109)

We remark that we also have, from local self-induction, that dH/dt is propor-
tional to 1/R. This lead to rings which expand with a radius proportional to
V/t for large time. This describes the interaction of two rings which approach
each other and expand their radii. Ultimately the line description breaks down,
of course, as the two rings get close together.

5.8 Axisymmetric flow reconsidered

We reconsider axisymmetric flow without swirl and redo the proof of global
regularity given in (5.5) within the present framework. We suppose that the
initial vortical field is

(W2, wr,wp) = (0,0,wo(¢, p))- (110)

Thus the vorticity field consists of circular unknots. Lagrangian variables for
the Euler flow then have the form x = x(¢;, p, ). We let(, p range over the
closed compact set, D. The vorticity field for subsequent times is given by

ox
w(x(t; ¢, p, @), t) = p’lwo(C,p)a—(b, (¢,p) € D,0< ¢ <27 (111)

That is, ¢, p, ¢) are Lagrangian variables. We want now to consider the effect
of all vorticity on the stretching of a single unknot C' of instantaneous length
L =27 R(t). Using (107)

B ¢ 0s" wo
2t == [ (W17 < )G R pipdpdcag]ds. (112)

Let Vi denote the support of the vorticity in Lagrangian space, as well as the
volume of this support. We assume that maxy, “"T“ < C. Then we may estimate

(112) in a manner similar to what was done in section (5.5). For some Ry > Owe
divide the inner integral into to parts, I;,7 =1, 2,

S
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We see that , since we may take df’ = d¢, and see that ' < R + Ry, and
ts = R™!, we have

R+ R
L] < 2220 unRy). (114)
Also .
I < C—=(R+ Ro)W 115
2] < R%R(+O)O’ (115)
where we have used wo (¢, p)/p = w(z,7)/r. Combining these results,
dR 1 R+ Ry 1
o —| < = 4 11
=l < 23[0 (47Ro) +CROR(R+R0)VO] (116)
Setting 4T R3 = Vi we obtain
dR
|7 | = 2CRo(R + Ro), (117)

and so R < (Rp + R(0))e2¢Fot — Ry,

Conjecture: The mazimum vorticity of an axisymmetric Euler flow with-
out swirl in R3 grows at a rate which can be bounded above by Ct* for some
positive number c. That is, the exponential bound we have established does not
adequately account for the constraints of topology for this class of flows. We
shall indicate below a proof that the actual bound should be a multiple of #2.

6 Geometry of Euler flows- variational methods

6.1 Hamilton’s Principle and Hamiltonian structure

The canonical Hamiltonian representation of dynamics takes the form (see the
paper by Shepherd in [3])

v OH

— =J— 118

ot ov’ (118)
where v = (q1,...,qn,P1,.-.,pn)’ are position and momentum field variables,

J= (_OI é) (119)

where [ is the n x n identity matrix, and H is the Hamiltonian function.

Hamilton’s Principle states that the evolution of the dynamical system must
be such that ¢ [ £Ldt = 0 for some Lagrangian and all variations of the coordi-
nates (vanishing at the endpoints of the time interval of integration x(¢) involved
in the definition of £. In the present context we take

8X 8x
L= / 8t 8t + p(Det(J) — 1)dV. (120)
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Here the time derivatives are at fixed particle label, and p is a Lagrange multi-
plier depending upon particle and time.? Since §Det(J) = V - §x we obtain

9?x
5/£dt = // —[= + Vp| - 0xdVdt = 0, (121)
p Ot?

Thus the Euler equations are obtained as the Euler-Lagrange equations under

the variation, plus Det(J) = 1 as a condition on the Lagrangian coordinates.
In fluid mechanics, the Hamiltonian formulation arises very simply in 2D

kinematics. the streamfunction ¥(z,y,t) of a 2D incompressible velocity field

satisfies
o _0v oy _ 0w
ot oy ot oz’
where x,y are Lagrangian coordinates.

In the case of the 3D Euler equations, we define a Hamiltonian analogously
to what is done in finite systems, as

(122)

1
H= / u-— — L]dV = /D Juu — p(Det(J) — 1)dV. (123)

Note that variations in u and x are taken independently, and we make use
of the variational derivative. Let F' = [, f(x)dV. Then 6F/dx is defined by
6F [,]6F/6x] - 6xdV for all variations éx.

We thus see from (123) that

B R T ) 12
at  du ot ox

This is a Hamiltonian system in “canonical” form, but with reference to an

infinite dimensional system.

In fact, the space D is so complicated that this formally elegant result is not
very useful in practice. We indicate below some of this complexity.

A better approach to a Hamiltonian theory of the 3D Euler flow problem
is to focus on the vorticity field in place of the vector of coordinates and mo-
menta, and not seek a canonical structure. We note first that if we define the
Hamiltonian as simply the total kinetic energy,

1
H:/ —|ul?dV, (125)
D2

and set u =V x A, then we have

oH

5, = A (126)

Problem 8 Verify (126).

3Do not confuse the J symbol, used here for the Jacobian, with the J operator in Hamil-
tonian theory.
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Thus the vorticity equation may be written as

Ow oH
e g 12
ot J dw’ (127)
where J denotes the operator
J==V X (wxVx()). (128)

To qualify as a Hamiltonian representation, J must determine a bracket

of .09
1,9 = (55,750, (129)
which has the right properties: it must be bilinear, skew-symmetric, and sat-
isfy the Jacobi identity. These hold for (128), so that (128) is a Hamiltonian
representation of the vorticity equation.

It is however not canonical, because JA = 0 in general has non-trivial
solutions, namely the possible steady Euler flows. A functional C of w having

the property that

iC 4G

[C,g] = (5—W,J5—w) :O, for allg (130)

is said to be a Casimir. One important Casimir for Euler is the total helicity ,

cz/ u-wdV. (131)
D

(We have previously used H for helicity, but this symbol has been adopted

locally for the Hamiltonian.) We have % = 2u. From the extremal property
for steady flows (variation of u be transport under a flow), we would thus expect

that for any steady Fuler flow, there must exist a Casimir C such that

5C oM

dw  dw

—A. (132)
In the case of helicity, these are the Beltrami flows with constant proportionality,
a very small subset of steady Euler flows. However other methods may be used

to identify all Casimir invariants and show that all Euler steady flows may be
characterized as extremals with respect to variations of w, see [17]

6.2 Unsteady Euler flows as geodesics

We have observed above that the action
t2 t2/ 1 8X 2
= —|—1°dVdt 133
el / 35 (133)

is stationary under volume preserving variations dx, provided that these vari-
ations vanish at ¢t = t1,t> and the flow field as a whole is an Euler flow. This
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means that in the space D, the fluid flows are geodesics in the topology of the
energy, a point that Arnold emphasized in his early papers.

Shnirelman (see his article in [2]), has explored the geometry of D from this
viewpoint, and has found some unexpected properties which help to understand
how complicated the space D actually is.

Let us denote by g a certain element of D, that is, a diffeomorphism of D
into itself, generated by some flow with time as a parameter. For g we define
both the action, as above, and the length

t t2 ox 1/2
L), = [ ([ 15 ran (134)
1 ty D

Let g1 and g2 be two elements of D. We define the distance between the maps,
by

dist(g1,g2) = inf L{}] (135)

where the infimum is taken over all smooth flows h(x,t) such that h(x,0) =
g1(x) and h(x,1) = g2(x). We say that a map g is attainable if dist(e,g) <
00, where e denotes the identity map. In other words, a map is attainable if
there exists a smooth flow of finite length (not necessarily an Euler flow) whose
Lagrangian coordinates yield the map at time 1. Finally, we define the diameter
of D as

diam(D) = sup dist(g,h). (136)

g,heD

We then have the following result;

Theorem 4 Let d be the unit cube. (1) In two dimensions, diam(D) = co. (2)
In three dimensions, diam(D) < co.

The idea of the proof in 2D (I have not found a complete account, so must
guess) is to work inside a circle instead of a square (an inessential difference),
and to consider a “twist map”

(r,0) — (r,0 + N¢(r)) = gn(r,0), (137)

It then is shown that dist(e,gn) > ¢N and so grows indefinitely with N. Of
course for large N points move around the circle many times and so it would
seem possible to make angles mod 27w and keep the distance bounded. But
remember we must use smooth diffeomorphisms. Suppose that a particle moves
21 + € while a nearby one moves 2m — e. We see that a discontinuity in the
map could be generated by this procedure. In three (or higher) dimensions the
important point is that the extra dimensions enable shorter returns to be found,
so that one can always keep the distance under control. Shnirelman proves the
result by an ingenious construction involving the division of the cube into small
sub-cubes. Within each sub-cube, the map is smooth, and the global map is
constructed by continuous permutations of the sub-cubes. He is then able to
show that the he can find a discrete map of this kind, which is arbitrarily close
to a smooth map, which makes the distance finite.
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Shnirelman has also proved an interesting result concerning Euler flows as
geodesics. We say that a flow u “connects” e to an element g € PD if the
Lagrangian coordinates of u yield g at time 1.

Theorem 5 In three dimensions, there exists an element g € D, such that for
an smooth flow uconnecting e and g, there is another smooth flow @ connecting
e and g, such that the action is smaller, A{ﬁ}’é < A{u}’(l). Thus the minimal
action cannot be achieved.

This result is analogous to non-existence of minimizers in certain classical
variational problems, e.g. the shortest smooth curve connecting points A and B
in R?, such that the tangents at the points are orthogonal to the line joining the
two points. It points to the complexity of the objects in D, and the inadequacy
of the present Euler flow theory.

The proof of the theorem utilizes a g of the form (h(zx,y), z), i.e. a 2D map
in planes z = constant. The proof is technically involved because of its use of a
kind of generalized Euler flow defined probabilistically. However it relies on the
profound difference in the geometry of two and three space dimensions.

To sum up, in three dimensions we know that all fluid states are accessible
by elements of D of finite length. We also know that in a formal sense an Euler
flow connecting two fluid states will minimize the action and so be a geodesic
in D. However this minimization problem need not have a classical solution.

6.3 Braids

This term may be used in several ways in the discussion of solutions of Euler’s
equations. First take D = Dy as two-dimensional and consider the cylinder
Dy x {t|0 <t < 1}. The orbits of a fluid particle moving over the time interval
[0,1] are now strands connecting the two ends of the cylinder. The totality of
these strands corresponding to a flow in Dy form a continuous braid. Euler flow
in 2D can thus be represented as braids in R3. Alternatively, consider steady
vorticity fields in Dy x {2|0 < z < 1}. Any vortex line connects the two ends
of the cylinder in a 1-1 fashion. Does there exist a steady Euler flow with this
structure?

This last braid construction has a widely known analog in magnetostatics,
which is actually more natural as a physical problem. In fact this form of the
problem has been proposed by Parker as a model for coronal heating of the sun.
Here the strands are magnetic field lines, and the question is what happens as
the field lines relax to a steady configuration. Recall that this magnetostatic
equilibrium is mathematically (apart from boundary conditions) equivalent to
steady Euler flow when u replaces B.

The nice thing about a braid is that it offers a fairly clean way to describe
a knot, but also has the above applications. In Figure 6 we show a (left) trefoil
knot, and how it leads naturally to a braid. We can then develop a symbolic
algebra of braids by counting the strands from left to right at the top, and as
we descend the braid apply from the left a factor o; if the ith strand crosses
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over the i+1st strand, and the factor o; * if it crosses under. Thus from Figure
6(d) we see that the left trefoil knot has the symbol o10101 = 073.

(a) (b)

D G

(c) (d)
Figure 6. (a) A (left) trefoil knot. (b) An equivalent knot. (c) Regular
representation. (d) Braid representation.

Of course we can do this for any finite number of strands, and in fact this
representation of n-stranded braids (or their equivalence classes) forms a group.

6.4 The Parker problem

Out interest here is continuous braids and the Parker problem mentioned above
is a concrete application of this idea. We consider a representation of a steady
magnetic field in terms of the Fuler potentials o, 3,

B = Va x V4. (138)

Let a magnetic field be given in a stretched cylindrical domain Do x {¢]|0 <
¢ < 1}, where we set ¢ = ez and we regard the diameter of D2 as of order unity.
We have seen that force-free magnetic fields are analogous to Beltrami velocity
fields, and that these fields may be obtained by minimization of energy subject
to fixed helicity.

Another way that a force-free field can be obtained in the present geometry
is by prescribing the normal component of the magnetic field on the ends of the
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cylinder, see [18]. We thus seek, in the stretched geometry, potentials having
the expansions
a = A(z,y,0) + €C(z,y,¢) + O(e"), (139)

8= B(x,y,¢) + € D(z,y, ) + O(e). (140)
We require that B -i, = 1 + O(€?), so that necessarily
A,B, — AyB, = 0(A,B)/0(x,y) = 1. (141)
One finds from these relations, writing B = (B, By, B),
By = €d(A, B)/0(y,¢), By =ed(A,B)/(( ), (142)
B. = 1+ ¢[0(A,D)/d(z,y) — A(B,C)/d(x,y)]. (143)

Note that this is a stretched braid which does allow non-trivial knots, since the
O(e) transverse fields can intertwine over a distance z = O(e™1).

The minimization of energy will now be carried out subject to(141). Intro-
ducing a multiplier A(z,y, ), we have

5((M + N +2K) =0, (144)
where
M= D d(A, B)/d(y, ¢))* + (0(A, B)/8(x,¢))*dV, (145)
N = [ 2(8(A, D)/d(z,y) — (B, C)/(x,y))dV, (146)
D
K= / AO(A, B)/8(x, y)dV. (147)
D

Performing now the first variation, we assume that dA = B = 0 at the
ends of the cylinder (magnetic lines tied there), and discard all lateral surface
integrals by necessary boundary conditions there or else considering the walls
to be at infinity with compact support for the magnetic field. Wed then obtain
the following Euler-Lagrange equations:

9(A,0(4, B)[0(y,))/0(y, () + 0(A, 0(A, B)/9(x,())/9(x, ()

+9(A, \)0(z,y) =0, (148)
9(B,9(A, B)/0(y, ())/0(y, ) + 0(B, (A, B)/9(x, ())/9(x, )

+9(B,\)0(z,y) =0, (149)

0(A,B)d(x,y) = 1. (150)

While these expressions look formidable, they actually have a simple interpre-
tations in terms of the magnetic field structure or alternatively an Euler flow.
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If we multiply (148) by B,(B,) and (149) by A,;(A,) and subtract, we obtain
two equations have the form

Us—V(Va—U)+P.=0, Ve+U(Vy—U,)+P,=0, (151)

P=-\U=0(A,B)/0y,(),V =-0(A,B)/I(z,(), (152)

where (U, V) = (Bg, By): (Note that U, +V,, = 0 by (150).) The notation here is
meant to reflect that fact that these equations are those of a 2D incompressible
fluid with ¢ playing the role of time.

But first note the following:

Theorem 6 If the Euler potentials are close to Cartesian coordinates, i.e. A =
x + 0A, B =y + §B, where the variations either vanishes at lateral infinity, or
else (0A¢¢,0B¢c) - N =0, then we have

To prove this, make the substitutions A =z + JA, B =y +dB in M, N, K
and take first variations. This is easily seen to yield

0A, + 5By =~ 0, 5Ay<< — 5Bx<< ~ 0. (154)

Introducing the streamfunction ¥ as in (153), we have W,gzee + Uyyee = 0.
Under the stated conditions we then must have W, is independent of z,y, and
we may take it as zero since only JA, 0B are of interest. Thus ¥ is linear in ¢
and we are done. Thus if Uy (z,y) and ¥y (z,y) are smooth functions, then so is
B. If these two functions have singularities, the a “ribbon” singularity extends
through the cylinder.

But our analogy with a 2D flow allows us to make a similar conclusion
regarding more general fields. Since we have global regularity for 2D Euler, the
only way to have singularities in the equilibrium field is for the “ initial” (U,V),
at ¢ = 0, to possess singularities. These then are carried “forward” by the flow,
yielding a ribbon which extends down the cylinder and connects the two ends.
Typically the singularity in question will be a vortex sheet as in Figure 5.

What is not known is whether the “unstretched” geometry admits singular-
ities in B in the interior of the cylinder even though the Euler potentials are
smooth function of z,y at either end.

7 Nearly 2D Euler flows

We have seen the great difference between 2 and 3 dimensions in every aspect of
Euler flow theory. Is there any theoretical approach that lies in between these
two disparate cases? One can in principle consider fluid dynamics in a space of
fractional dimension, but I refer here to a geometrical approximation analogous
to the stretched Parker problem. If one similarly “stretches” vortical structures
in R3 so that they are quasi-2D, what can be said about the subsequent evolution
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of the stretched configuration? The disappointing fact seems to be that all
that can be said is that in a finite time, in general, whatever approximations
were used to obtain quasi-two-dimensionality will cease to be valid, and so the
structure must revert to one which is essentially three-dimensional. If this is to
be taken as fact, any attempt to find some restricted class of “simpler” Euler
flows in which a global regularity result might be proved is doomed to failure,
apart of a trivial group of Euler flows which are locally stable when subjected
to small disturbances.

An class of stretched Euler flows indicating the above assertion has been mo-
tivated by a “stretched Taylor-Green problem” [15]. Taylor and Green consider
the IVP for 3D Euler for initial conditions of a form typified by ug = (¥, ¥z, 0)
with 1 = sinz siny sin z. The flow can be described initially as a periodic array
of vortical cells with axes aligned with the z-axis, such that in each cell the axial
vorticity is periodic in z with period 27. Since the circulation carried by a cell
is also periodic, vorticity threads through the boundary of the cells. As time
progresses this simple alignment becomes very distorted, and Taylor and Green
were interested in the creation of small eddies from larger ones by this nonlinear
process.

A ‘stretched” version of this problem would take @ = sin z siny sin ¢ where
¢ = ez. More generally, we might assume that in a general cylindrical region
Do x R! we have an initial velocity as above but with 1) = 1 (x,y) sin ¢ where
1)y is topologically a set of closed nested streamlines with the same orientation.
We will summarize how this restricted IVP can be analyzed, and indicate how
it leads to a conclusion that the stretched configuration breaks down in finite
time.

We write

u(z,y, 2, t;€) = q(z,y, ¢, 7€) + w(z,y,(, 756k (155)

Here 7 = et. The then expand in e:

(qawap) = (qO;U)OapO) +€(q1;wlapl) +O(62) (156)

It is easy to see that, once these expansions are inserted into the 3D Euler
equations and the O(1) terms taken, we find that (qo, wo, po) satisfies the 2D
steady 2D Euler system augmented by qo - Vwg = 0. Gathering the terms of
O(e) we obtain, dropping the subscripts “0”,

q-Vw; = —Duw + ¢*/2 — H, (157)
q-Vwi = —Dw + ww¢ — (q¢ X k) - Vuw, (158)
V.-qi = —we. (159)
We have defined 9
D:—+wa—<+q1~v. (160)
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Since we have assumed a local topology of nested closed contours, a compatibil-
ity condition must be satisfied by the right-hand sides of (157) and (158). The
left-hand sides vanish under the operation of contour averaging,

d
()= j{q*‘é’q -ds = ?S. (161)
If the contour over which the averaging takes the constant value ¥(z,y, ¢, 7),
the following properties of (-) can be established:

(1) = Ay, (Vo) = —A¢, {¢r) = —Ar. (162)

Here A is the area within the contour carrying this value of v, as a function of

¢,T.
To prove the first of (162), note that

SA = Aydep = 7{5nds - 51/)?{3—2615 - 51/)?{3—2 = 5(1). (163)

The other two identities can be established by noting that )¢ or 1, both vanish
under the condition that s, are being held fixed. Thus, for example 0 =
Ueln,s + Ynncly,s. Contour averaging then establishes the second relation, and
similarly for the third. We also note that

[ [eaa= [¢av. (164)

These relations may be used to evaluate the compatibility relations obtained
from (157),(158), and we omit the details, which mainly involve careful use of
the chain rule.

The final results utilize the contours ¥= constant for each (,7 as “radial”
coordinates. The cross-contour velocity U is defined by

U= (Dy)/Ay. (165)
We also define
Dy = 0; + w0 + U0y. (166)

We note that (D(-)) = AyDy(-), where (-) can be any function of ¥, (, 7. It
may be shown that
DyAy + Ay(we + Uy) = 0. (167)

The other equations resulting from contour averaging are then

Ay(Dyw + He) =T, (168)
P

r— / HyAydi. (169)

DyT = 0. (170)
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Note that T" is the circulation around a contour, so that (170) is just Kelvin’s
theorem, while (168) is the conservation equation for {-momentum. We now
have equations (167)—(170) for the five unknowns A, w, U, H, T, and so lack one
relation. This last relation must relate the area function A(¢)) to the local set
of contours. This must be obtained by solving V¢ = H,(¢)) at fixed values of
¢, 7. The solution in the cylinder of this elliptic problem gives A(v). This kind
of PDE system was studied by Harold Grad in connection with plasma models
of a similar kind, and has been referred to as a generalized partial differential
equation. The distinguishing feature of a GPDE is that on of the “independent”
variables, in this case v, depends upon the solutions to the entire system ( since
we must know H to solve for ¢). The solution of a GPDE thus involves iterations
between the trial area function A and it’s resulting H, and the next iterate of
A determined by the solution to the local elliptic problem.

A further reduction of the problem is possible, to a form that i effectively in
axysymmetric variables, a so—called “Schwarz symmetrization”. (This is related
to the reduction to action-angle variables in classical dynamics.) We define an
effective cylindrical radius by

r? = A/ (171)
The effective swirl component of velocity is then
oy
. = ) 172
Y Ore (172)
Finally the effective radial velocity u. is defined by
0 0 0
Dy=D,=— — e—- 173
v ar e " ar, (173)
We then obtain the following effective axisymmetric system:
ow 1 07eve
—— +r, =0 174
G+t =, (174)
27TT8(D8’LU—|—H<) — vl =0, (175)
2rH,, = vl'y,, D.I'=0. (176)

Note that, if ' = 277.v. and H = p+v?2/2, as for true axisymmetric (stretched)
flow with swirl, then the system (174)—(176) reduces to

Dew+pe=0,p,, = 02 /re, De(reve) = 0. (177)

This is precisely the stretched form of axisymmteric Euler flow with swirl.
This form of the problem retains the complexity of a GPDE and so further
approximations can be made to facilitate numerical solutions. The simplest
is to consider the stretched problem in a thin cylindrical annulus. We have
mentioned above that this problem is then mathematically equivalent to the
Boussinesq of a flow with density variations. The problem analogous to the
Taylor-Green initial condition can be studied under these assumptions, and it
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is found that ¢ derivatives of flow quantities become infinite in finite time, [15].
The mechanism is fairly explicit, and is illustrated in Figure 7. On either side
of a section of maximum or minimum circulation, centrifugal forces at the wall,
and hence the local pressure there, diminish with axial distance. Thus there is
axial motion along the wall toward the reduced pressure, and this causes the
vortex lines which terminate on the wall to be brought toward the section of
zero circulation. This process results in finite time in infinite (- derivatives.
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Figure 7. Blow-up in the stretched Taylor-Green type IVP in a cylinder. The
generation of axial flow brings vortex lines to the sections of zero circulation.
The vortex lines (solid) actually end at the boundary. The vortical circulation
(curved dash lines) are shown. The straight dashed lines indicate the axial flow
driven by centrifugal pressure

The problem we have considered is not the only stretched geometry that one
can envision. We might also consider a distortion of vortex lines in the Parker
geometry but with no penetration of vortex lines to the boundary. In other
words, the circulation on each section of the cylinder is the same constant for
all time. The problem here is that it appears that the expansions in € must
be carried out through order €2. This is an interesting case to study, but the
calculations will be more elaborate.

8 Global regularity continued

8.1 Axisymmetric flow without swirl yet again

Our purpose in this section is to indicate how a close attention to vortex geom-
etry can improve estimates of maximum vorticity and hence have an impact on
issues of global regularity. We return to the problem axisymmetric flow with-
out swirl and the conjecture that a better bound than the expoential (in time)
should be possible.

Assuming that the initial vorticity satisfies |wg(r, z,0)/r| < C, it follows
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from the Biot-Savart law that

—+7

lur|(r, 2, 1) < C/V r|z—<|[ ((T—p)2+2Tp(1—COS1f))+(2—<)2)73/2d1/)]pdpd<.

—T
(178)
Here Vj is the volume of the initial support of vorticity, assumed finite. Now
1 —cosy > k*%, k = v/2/7, and so we may make this substitution, carry out
the integral, and obtain

furl = |97} < 20 / FCI(G = )% + )N+ p)? + ) V2pdpdC. (179)

Here we have set z = 0 since we want to arrange the vorticity to maximize the
RHS and so the value of z is arbitrary. The problem then is to find an upper
bound when the integral is restricted to a domain D of the p, {-plane such that

Ip pdpd¢ = Vq.

Let us assume that r does not get large compared to the diameter of the
initial support of vorticity. The we are done since vorticity then stays bounded
for all time. If on the other hand r becomes large , then we have approximately

G <200 [ K= o4 ) e (150)

Note that we have taken p = r since we will be maximizing the resulting inte-
grand by concentrating the vorticity near r = p,{ = 0. Let p —r = Rcosf,z =
Rsinf. The we must maximize

dr 2m F(0)
&< 2CT/ / | sin§|dRdd, (181)

given that
27 1
/0 5FZ’(e)de = Vo/27r. (182)

The solution of this variational problem is

1
= —+/Vo/r|sind|. (183)
T

Thus
— < 20/ 1Vp. (184)
We thus obtain a bound r < C2V0t2 + 24/ Vorot + 79, or, since |wg| = Cr.
max |wg| < C*Vpt?, t — oo. (185)
This result has a simple physical interpretation in terms of advection of

vortex tubes, which is typified by a thin toroidal distribution of vorticity such
that the vorticity distribution of a section is as shown in Figure 8.
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7
Figure 8. Expanding vortex structure yields the ¢? behavior.

The vorticity is as odd function of the dividing line, say +wp in the upper
half and —w in the lower. The two-dimensional vortex discussed by Batchelor
(in his text, p. 535) has this structure. The important point is that, if the radius
of the section is a, then a?r ~ constant by conservation of vorticity support.
But from vorticity kinematics we also have w? ~ constant. Finally, the structure
propagates with a velocity

dr

U:E

~wan~a Tt~ /1 (186)
If the cross-sectional structure is unchanged as the torus lengthens, then the
total kinetic energy would increase, violating conservation of energy in Euler
flow. Thus there must in fact be some compensating change in structure. The
configuration of vorticity is similar to that of two smoke rings of opposite signed
vorticity approaching each other and expanding. The compression of the two
vortices onto the plane of symmetry thus is likely to be present here as well,
with an accompanying effect on the rate of lengthening. We thus conjecture
that the actual rate of lengthing is smaller than our estimate, although it is
possible that the power 2 is sharp. Conservation of energy would have to be
imposed as a side condition examined this question.

8.2 Arbitrary unknots

The preceding calculations suggests that any properties of the vorticity that can
be exploited will have an impact on estimates of vortex stretching. In the case
of axisymmetric flow without swirl, a reduction on a bound from e to 2 seems
to be accessible. Can one reduce the simple estimates which bound vorticity by
1/(t* —t) to anything slower?

Two nontrivial problems with some simplifying elements suggest themselves.
The first is axisymmetric flow with swirl. We have commented upon the search
for blow-up in such flows—clearly the question of global regularity will be dif-
ficult to resolve even in this case, but it does deserve further work. The main
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consideration is that vortex lines are spirals on toroidal streamsurfaces, which
may or may not be closed.

Another relatively simple topology, which we consider briefly here, is that
of a continuous distribution of unknots. We may think of these flows as that
class whose initial condition is an isovortical map (i.e. transport of vorticity by
a smooth volume preserving flow) of an axisymmetric flow without swirl. That
is, unlinked circles map into arbitrary unlinked closed loops.

We have discussed above the calculation of dL/dt = §t - du in the case of
an unknot, where t is the tangent vector to the vortex line. we can write this

as il
i 7{ kn - uds, (187)
where k is the curvature of the vortex line and n the normal vector in the
osculating plane. Using the Biot-Savart law we then have

dLi 1 -3 14/ !
o —4Wﬁ%25y vy (w't' x n)dV'ds. (188)

Here S} is the support of the vorticity at time ¢. We should point out here
that it is not necessary that a vortex line acquire infinite length in order for
the vorticity to become unbounded somewhere, but it iw one scenario which
is worth considering separately. Prior to such a blow-up, the vortex line in
question would have an arc length function which in Lagrangian notation would
be s(so,t) where sg is the Lagrangian coordinate. Then

0s w

— = 189

850 wo ( )
at the blow-up, % must vanish at ¢ = ¢tx. Since functions prior to blowup are

smooth, we have

%0 — aa(t)(s0 — alt))? +b(1) + O(s0 — "), (190)
where a(t*) is the Lagrangian coordinate of the blow-up point on the line, and
b(t) >0 — 0 ast — t*. Of course all terms of the Taylor will in principle need
to be considered as t — t*, but certain special cases lead to a segmenr of infinite
length. For example if ag = 1 and we neglect all terms not exibited, integration
yields the length of a small segment of the line as

B a-+e dSO B 9 anil i
bes /tH (so—a(t))2+b(t)  /b(t) k NG (191)

Thus as t — t* we get a segment of infinite length.

Our goal must then be an upper bound on dL/dt as given by (188). The
problem is one of selecting an arbitrary curve C, and then deforming the and
stretching the initial vorticity field such that the support volume is preserved,
and arranging the vorticity to maximize the rate of lengthening of C. This

42



problem is completely analogous to the variational problem for axisymmetric
flow without swirl, but without nearly a much control over the geometry. We
know only that every vortex line is to be an unknot.

The freedom inherent in 3D now allows not only streching of an unknot,
but also twisting and folding. This allows a vortex loop to be mapoped into an
equivalent volume such that the vorticity is doubled in intensity, see Figure 9.
Clearly the main question arising now must be how to handle the fact that « is
no longer directly related to the total length of the unknot.

) — =

OO ©

Figure 9. The stretch-twist-fold mechanism for amplification of vorticity (or
magnetic field, i.e. of any frozen-in vector field). Note that the Figure omits
reference to the deformation of the complement of support of the field.

It is worth mentioning a related question that arises in magnetostatics. Sup-
pose a sphere is filled with an axisymmetric magnetic field consisting of unknots
of field, i.e. all field lines are circles with a common axis. Does there exist a
diffeomorphism which will reduce the total energy of the magnetic field to an
arbitrarily small value? Since the analogous fluids question is to minimize the
L? norm of the vorticity, the object here is maximal “anti=stretching” of vor-
ticity. It turns out that such a diffeomorphism exists, see [1] p. 134. The trick
is to stretch all but a small outer shell into a thin pencil shape, which is then
wound up into the central space. The shell occupies the complement of this
process, but this, along with the folding, can be estimated to contribute little
energy, so the depletion comes mainly in forming the pencil shape.

9 Kinematics: the fast dynamo problem

We have seen that issues of global regularity might be attacked through an es-
sentially kinematic argument, wherein vorticity is subject to certain constraints
but is otherwise at our disposal to arrange to try to maximize vorticity growth.
We conclude these notes with a discussion of a related problem in magnetohydro-
dynamics, namely the dynamo problem, and especially the kinematic dynamo
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problem.

Dynamo theory attempts to explain the origin of magnetic field in the cos-
mos, and the persistence of these fields in the presence of dissipation, through
active dynamo excitation in a moving conducting fluid. For example, in the fluid
core of the earth, convective motions of the electrically conducting (essentially
iron) material is thought generate the magnetic field of the Earth through a dy-
namo process. The equation for the magnetic field in a homogeneous electrically
conducting fluid takes the form

B, +VxBxu)—eVB=b;,+u-VB-B-Vu—-eV’B=0. (192)

Here B is the solenoidal magnetic field, V - B = 0. The parameter € > 0 is the
inverse of a “magnetic Reynolds number”,

e = (ULpo)™t, (193)

where p is the magnetic permeability, o the magnetic conductivity, and (uo) =t

71 is often referred to as the magnetic diffusivity. In most applications € < 1,
and can be smaller than 107'0 in astrophysical applications.

The velocity field u, which will be taken here to be divergence-free, is de-
termined by dynamical considerations, involving the dynamical feedback of the
magnetic field via the Lorenz “J x B” force. This makes the full dynamo prob-
lem a branch of magnetohydrodynamics. In the spirit of the topological interests
of these notes, we shall consider only the so-called kinematic dynamo problem,
where the velocity field is regarded as a given motion. This may be a steady
flow, or it may be periodic in time. We can think of the given u as the product of
some dynamical system not involving a magnetic field. The kinematic dynamo
problem is thus reasonable in the following sense: we can ask for the motions u
which make a very small “seed” field grow indefinitely in time. So long as the
field remains sufficiently small, the back-reaction of the field on the flow can be
neglected. Another way to think of this in dynamics system terms is that we
would like to find a u such that the zero B state of the system is unstable to
small seed fields. If a system is known to have the property that all zero-field
states are unstable in this way, such a system is a good candidate for acquiring
a magnetic field.

Now (192) is formally equivalent to the viscous vorticity equation with w
replacing B. The difference is of course that B is not the curl of u. Nevertheless
we can also envisage the frozen-in property of the vorticity and magnetic field as
have e analogous kinematics, so the stretching, twisting, and folding of vortex
tubes can be treated analogously as a kinematic dynamo problem at ¢ = 0.

But we must make a careful distinction between ¢ — 0 and ¢ = 0. If
€ = 0 and the field is frozen into the fluid, motions in 3D can produce small-
scale, intense magnetic field which do not dissipate. However such fields can be
rapidly dissipated for even a very small e.

Since (192) is a linear equation for B given suitable boundary conditions we
can imagine that the following eigenvalue problems could be posed for € > 0.
In the case of steady u, set B(x,t) = e’'b(x). If there exist eigenvalues p such
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that the real part of p is positive, we say u is a kinematic dynamo. In the case
of time-periodic u, the existence of a Floquet exponent p with positive real part,
so that the magnetic field acquires a factor e?” over one time period 7', implies
dynamo action. Thus the search for kinematic dynamos involves looking at the
dependence of the spectrum of a differential operator on the coefficients (given
by u) which define the operator.

Since our interest is in small € it is useful to characterize kinematic dynamos
by the behavior of the largest growth rate (the real part of p) for small € Let
this largest growth rate be o(e). them if o(e) — 0 as € — 0 we say the dynamo
is slow. If liminfo(e) > 0,e — 0, we say that the dynamo is fast. A good
reference to slow dynamo theory is [19]. The fast dynamo problem is treated
discussed in [7], and also in chapter V of [1].

9.1 Beltrami fields as dynamos

We give an example now of a construction of a dynamo. We consider an infinite
expanse of fluid and spatially periodic fields defined throughout the fluid. We
will also consider fields on two distinct spatial scales, while solving (192) with e
taken to be of order unity. In the dimensional form of (192), x will denote the
large scale variation. We then define

yv = x/6, where § < 1 is a ratio of small to large length scales. We want to
consider a steady, spatially-periodic velocity field on a (27)3 lattice in y, of the
form

u=06"Y2U(y). (194)

The idea is to try to find an ordering so that u generates a magnetic field of the
form

B = By(x,t) + 6By (x,y,t) + O(9). (195)

Thus we intend to show how small-scale velocity field can generate large scale
magnetic fields.*

Because of the small-scale structure and the presumed form of the fields,
the dominant terms in (192) give the following balance to leading order, (order
573/2):

eViBy = —By(x,7) - Vy,U. (196)

We formally solve the last equation on the small scales:
B, = ¢ 'V2 'By(x,7) - V, U. (197)

To obtain an equation for the large-scale magnetic field we average (192) over
the small scales, to obtain

0By

ot
4What has been called “asymptotology” is being used freely here. The discovery of the
correct scaling for consistent asymptotic approximation can sometimes be quantified, but it

remains largely an art. Fortunately it is an art that can be acquired, and the best way is
through experience, i.e. trial and error.

+ e Wy x (B x U) —eV2B, = 0. (198)
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Here (-) indicates the averaging over y.

Now (198) give us an expression which can be used to determine which
spatially periodic. It turns out the spatially-periodic Beltrami field can be
identified as especially effective dynamos. To illustrate this point consider the
ABC flow with A= B =C =1,

U = (sinys + cos ys3, sinys + cos y1, siny; + cos ya). (199)

We see that
(B1 x U) = —Bqy. (200)

Problem 9 Verify (200).

Thus we obtain a mean magnetic field equation,

OB
8—t° — e 'Vy x By — eV2Bg = 0. (201)

Setting By = e *+P!T" where I is a constant vector, we see that
pl' —ie 'k x T + €k = 0. (202)

Taking kx the last equation, and solving the system of two equations, we obtain
the “dispersion equation”

(p+ ek?)? = e 2k>. (203)

We see that positive p exist when e 'k > ek?.

We point out that on the scale spatial scale of the velocity field the appro-
priate magnetic Reynolds number is U6~ /26L/n = 6'/%¢' < 1. Thus the
velocity eddies are very diffusive, and this is built into the asymptotic “smooth-
ing” method we have used. While we have established that this Beltrami field is
a dynamo in the space of periodic fields, we can say nothing at this point about
the fast dynamo property. In fact the 111 Beltrami flow (199) is believed to be
a fast dynamo, but the ¢ — 0 must be studied numerically. It is not accessible
by asymptotic smoothing methods.

9.2 Dynamo action by a cellular flow for small ¢

To illustrate analysis of dynamo action by flows with simple topology, in the
limit of large R, we discuss no a simple cellular flow having the velocity field

u= (uHa 1/)) = (d)ya _wxa 1/))5 1/) = SinxSiny' (204)

Notice that V x u = u, we are dealing with a Beltrami field. In fact this flow is
equivalent to “two-thirds” of the 111 ABC flow. This can be shown by dropping
the terms in z and performing a rotation, translation, and scale change of the
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coordinates. The magnetic field associated with such a cellular flow may be
taken to have the form

B(z,y,2,t) = """ (by, B(z,y)). (205)

Note that the z-variation has been separated out since u is independent of z.
The idea now is to insert this expression for B as well as (204) into (192) and
then study the eigenvalue problem as € — 0.

As a preliminary to this we consider the simple steady problem which results
when p = k = 0 in (205). It is not difficult to show that in this case the x,y-
magnetic field components by are given by A,, —A;), where A is determined
by the following advection-diffusion equation:

ug - VA—eVZA=0. (206)

We want to solve this equation in the square bounded by (0, 0), (0, 7), (7, 7), (0, 7)nd.
Consider the boundary conditions corresponding to a mean magnetic field (1,0).

In that case we may assign the values A = —7/2 and A = 7/2 to the lines y = 0
and y = 7 respectively. Along the two vertical boundaries we have 0A/dx = 0
since A must be an even function with respect to these lines.

We consider this boundary problem now for small e. Something analogous to
the constant vorticity property of closed contour steady Euler flows in Prandtl-
Batchelor theory happens here. The function A tends to constant over the
square varies only in boundary layers near the walls. By symmetry this constant
must be zero.

The boundary-layer equations are similar on each segment of the boundary.
On the segment y = 0,0 < x < 7 for example, we have

0 0 0 0 0
Ll omus S =X 02 (207)
oy '= o’ ox'v Oz’ 9y

In the boundary layer the fluid speed ¢ ~ u since v is small, and here on the
segment in question we see that ¢ is a function of x alone. Thus the boundary-
layer equation on this segment, and indeed on all segments, takes the form

0A  9%A
o - G — 0= UVE (208)

where s is distance along the wall. Note that the boundary layer thickness is of

order €'/2. Setting qds = do yields the heat equation:
0A  0?A
e L— 2
50 og 0 (209)

At the values of o corresponding to the corners, we require that A be continuous
when ¢ > 0. Thus we get a circulating boundary layer satisfying continuity at
these values of o and boundary conditions of either A = +7/2 or 24 = 0 at

9¢
& = 0 depending upon the segment.
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A closed-form solution of this problem is possible, see [7], sec. 5.5.1, but
we omit details, out purpose here being simply to indicate the nature of the
boundary-layer structure in the problem in the steady case.

Note the physical significance of this structure: the magnetic field is excluded
from the bulk of the domain and confined to the perimeter. This phenomenon
is called flux expulsion.

In the general case we write by satisfies

(P+ug-V)by =byg - Vuy, + eV’by, (210)

where P = p+ikiy and V? here is in x, y. The component B now follows from the
solenoidal condition, Vg - by = —ikB. The magnetic structure is still confined
to boundary layers, so dynamo action happens there as well. An essential dif-
ference between the steady and unsteady problems occurs in the corner regions,
and the difference underscores the importance of hyperbolic stagnation points
on flow kinematics. The term P in (210) modifies the continuity conditions
at the corners. One sees that an integral of the form P [ ¢~'ds will intervene,
which gives the time of passage of a fluid particle through the hyperbolic flow at
the stagnation point. For small 1, the time of passage goes as —log and this
affects the calculation of dynamo action. It was shown by Soward that when
one looks at the maximal growth rate, maximized over k, and small ¢, this rate
goes as logloge™t/loge™!. Since this last quantity goes to zero as e — 0, we
see that the cell is not a fast dynamo, but the rate of decrease is so slow that
there is little practical difference.

The mechanism of dynamo action is interesting in this example, for it occurs
entirely in boundary layers. Suppose that the spatial mean of the magnetic
field is momentarily concentrated in the z-directed flux. Then the z,y velocity
components in the vertical layers tend to pull out “tongues” of flux as loops
extending up into the vertical layers. These structures do not change the mean
field because the flux cancels out when integrated across the layer. However the
z- component of velocity also has its effect, and this is a shear which, because
of the z-periodicity of B, causes mean magnetic flux in the y-direction to be
created. (see the figure on page 140 of [7]. This y-flux is now acted upon by the
velocity field to pull out tongues in the z-direction, which with shear creates
mean flux in the z-direction, and the cycle is complete. For sufficiently small e
the mean flux is increased over a cycle, and dynamo action occurs.

9.3 The SFS fast dynamo

We now describe a map of the cylinder [0, 1] x (—o0, +00) in R? which is meant
to model the mechanism of dynamo action obtained above within the boundary
layers of the periodic cell. Iterations of the map will produce Lagrangian chaos
and lead to fast dynamo action. The map is defined by

(2z,y/2,z+ af(y/2)), ifo<z<1/2,
(x’y’z>—>{(2—y23:,1—y/2,yz—|—af(1—y/2)), if12<z<1 (1D
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The action of this map for o = 1 is shown on page 68 of [7]. It consist of a
“stretch-fold” or baker’s map, and a shear. We set

B = e2™**(b(y), 0,0), (212)

We can then represent the action of the map on the magnetic field, in the
absence of diffusion, by the map T acting on b(y):

Tb = 2sign(1/2 — y)e—2wika(y — 1/2)b(7(y)), (213)

where 7(y) the “tent map”, 7(y) = min(2y, 2 — 2y). We set

—+oo
by) = > bue”™m. (214)

n=—oo

and represent the effect of diffusion by the map on Fourier coefficients
He: by — bye 4™ cm®+k%), (215)

We call this map the SF'S map, for stretch-fold-shear. It is easily simulated
and one finds for small € that large, rapidly varying b(y) is created after a few
iterations. To measure the overall effect of the map in the average field, we
track the mean flux

fI):/O b(y)dy. (216)

It is found that positive growth rate of ® occurs for « sufficiently large. We
remark that in the case e = 0 it is difficult to obtain numerical accuracy for
the direct calculation of ¢ because of the small-scale chaotic structure of the
field. However it can be shown that the map which is the formal adjoint to T in
the relevant L? norm has smooth eigenfunctions whose associated eigenvalues
determine growth rates. So the adjoint map is therefore used to compute overall
growth rate when e = 0.

9.4 General properties of fast dynamos

A necessary ingredient of fast dynamo action is a chaotic Lagrangian struc-
ture for fluid orbits. This is achievable in steady flows in three space dimensions,
or in unsteady flows in 2D. The latter are most easily studied numerically. An
example is the flow

u(x,y,t) = 2cos?()(0,sin x, cos x) + 2sin?(¢)(sin y, 0, — cos y). (217)
Note that this flow superimposes two one-dimensional Beltrami flows modulated
in time.

All fast dynamos produce large fluctuating fields for small €. In fact most
of the magnetic energy is in these fluctuations. For any positive e, the field
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of maximal growth rate is obtained as an eigenfunction (of a Floquet problem
in the case of (217)). As e — 0, these become acquire indefinitely irregular
structure, and are called strange eigenfunctions. It was possible to circumvent
this difficulty with the SF'S model because of the existence of the well-behaved
adjoint, but for (217) the adjoint is not any simpler in its effect.

It is natural to speculate that calculations at zero e could be used to extract
the growth rate which is obtained by extrapolating calculations for € > 0 to
€ = 0. As the use of the flux function for the SFS map suggests, some sort of
projection of magnetic structure onto a mean field is needed. The equality of
the growth of a suitable projected field, to the extrapolated growth rate of the
diffusive eigenfunction, can be demonstrated numerically in many cases, but in
only a very few can the relation be proved to occur.

Fast dynamo theory is thus a kind of kinematic realization of the kind of
structure one imagines the vorticity field to have in fully developed turbulence
at large Reynolds numbers, as well as in the 3D IVP for Euler flows.
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