
Applied Math II Spring 2003
The Riemann function for the wave equation in two space dimensions

We have established that the Riemann function in three dimensions is given by

R(3)(x, t) =
δ(1)(t −

√
x2+y2+z2

c )

4πc2
√

x2 + y2 + z2

We use the “3” superscript to indicate three dimensions. The 3D delta function is a product of three 1D
delta functions:

δ(3)(x) = δ(1)(x)δ(1)(y)δ(1)(z).

The δ(1) in the above Riemann function is a 1D delta function indicating the function obtained as one crosses
the surface S : R2 ≡ x2 + y2 + z2 = c2t2 radially. When this delta function appears in an integral times
a test function, it will pick out the integral of the test function over S, but there are some factors which
appear which come from properties of δ(1)

We first consider these properties.
Property 1: If φ(x) is a test function and c is a constant (and dropping the superscript “1” for the

moment), then

δ(cx) =
1
|c|δ(x).

To prove this, let φ be any test function and a > 0. Then with u = cx

∫ +a

−a

φδ(cx)dx =
1
c

∫ +ac

−ac

φ(u/c)δ(u)du =
1
|c|φ(0).

A special case of this is δ(−x) = δ(x).

Property 2: Let f(x) be a twice-differentiable function with at most a finite number of zeros, x1, . . . xN ,
all of which are simple. Then

δ(f(x)) =
N∑
1

1
|f ′(xi)|δ(x − xi).

To prove this consider

S ≡
∫ +∞

−∞
φ(x)δ(f(x))dx.

Now contributions to S come only within small intervals around each point where f(x) vanishes, i.e. the N
simple zeros. Set df/dx = F (x). Then we have formally the change of variable

S =
∫

1
F (x)

φ(x)φ(f)df.

If f is increasing with x at a zero, the contribution at that zero will be 1
F (xi)

φ(xi) If f is decreasing at the
zero then we will get The negative of the last expression. Since F (xi) > 0 when increasing and < 0 when
decreasing, we get 1

|F (xi)|phi(xi) at every zero. This establishes that we get the summation as claimed.

We now obtain the Riemann function R(2) for two space dimension, from R(3), by a technique known
as the method of descent. Let L(3)u = ∂2

t u − c2∇2u denote the wave equation on three space dimensions.
We know that

L(3)R(3) = δ(3)(x) = δ(1)(x)δ(1)(y)δ(1)(z).
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We now claim that R(2), the Riemann function in 2D, can be obtained as

R(2)(x, y, t) =
∫ +∞

−∞
R(3)(x, y, z, t)dz.

Indeed we note that ∫ +∞

−∞
L(3)R(3)(x, y, z, t)dz =

∫ +∞

−∞
L(2)R(3)(x, y, z, t)dz

= L(2)R(2) =
∫ +∞

−∞
δ(1)(x)δ(1)(y)δ(1)(z)dz = δ(1)(x)δ(1)(y),

as required.
To do the integral, we hold t and x2 + y2 = r2 fixed and consider the integral in the form

∫ +∞

−∞

δ(1)(f(z))
4πc2g(z)

dz,

where f(z) = t −√
r2 + z2/c and g(z) =

√
r2 + z2. There are zeros of f(z) only if r2 < c2t2, in which case

there are exactly two simple zeros, z = ±√
c2t2 − r2.

Wec leave it as an exercise to show that the above properties of the one-dimensional delta function
enaable this integral to be evaluated, with the result that

R(2)(x, y, t) =
1

2πc

H(ct − r)√
c2t2 − r2

.

Here H is the Heaviside function H(x) = 0, x ≤ 0, H = 1, x > 0.
This expression for R(2) shows that, unlike the 3D Riemann function, the signal is not confined to r = ct.

In fact on that curve the signal is infinite as in 3D, but there is a non-zero but decaying signal for ct > r. At
any given time therefore, a given point (x, y) can be affected by data within the entire disc R < ct. Thus the
domain of dependence is not just a boundary r = ct, as in the 3D case, but fills the domain. Thus Huygens’
principle fails to obtain in two dimenions. In fact this is the case for all even dimensions ≥ 2. Huygens’
principle can be shown to hold in all odd dimensions ≥ 3.
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