
A MINI COURSE ON SCALAR CURVATURE
LECTURE NOTES FOR SCGAS 2025

CHAO LI

Abstract. These are my lecture notes for Southern California Geometric
Analysis Seminar, Feb 2025. I focus on Riemannian manifolds with positive
scalar curvature, especially its connection to geometric variational problems.

Throughout these notes, we adopt the following conventions.

• Unless otherwise indicated, manifolds and Riemannian metrics are smooth.
• Curvature tensors are defined as follows.

R(X, Y )Z = ∇2
X,YZ −∇2

Y,XZ, R(X, Y, Z,W ) = 〈R(X, Y )Z,W 〉

Ric(X, Y ) = tr(Z 7→ R(Z,X)Y ) = trR(·, X, Y, ·), R = tr Ric(·, ·).
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1. Motivations and basic examples

We start our discussion with some scenarios where scalar curvature plays an
important role. This section is partly motivated by Rick Schoen’s Nachdiplom
Lectures in ETH-FIM, 2017.

1.1. Einstein equations of general relativity. Suppose (Sn+1, g) is a Minkowski
manifold. Einstein’s theory of general relativity states that (Sn+1, g) represents
a space time if it satisfies the Einstein equation:

RicS −
1

2
RSg = T. (EE)

Here T is a symmetric (0, 2) tensor representing matter field in space time. A
natural condition we assume for T is the dominant energy condition (DEC):

For any future time-like or null vector V , −T (V, ·)# is also future time-like or
null.

This is equivalent to state that mass-energy can never be observed to flow faster
than light. In an orthonormal frame {ej}nj=0 near a point p ∈ S with e0 a unit
time-like vector, (DEC) requires that

T00 ≥

√√√√ n∑
j=1

T 2
0j.

Here T0j = T (e0, ej).
The Einstein equation (EE) is hyperbolic. To realize it as an initial value

problem, let us consider Mn ⊂ Sn+1 a space-like hypersurface (i.e. g|M > 0).
Denote by II the second fundamental form of the embedding M ↪→ S. The pair
(M, g|M , II) is called an initial data set. One should think of g|M the initial value
of g on M and II the initial derivative of g in the time direction.

Let us now slightly diverge and fix the convention of II. For a choice of unit
normal vector field ν of the embedding of a hypersurface, define the (scalar)
second fundamental form II by setting

− II(X, Y )ν = ∇XY −∇T
XY, ∀X, Y ∈ Γ(TM).

Note that with this convention, the unit sphere Sn ↪→ Rn+1, equipped with
the outward unit normal ν, satisfies that II(X, Y ) = 〈X, Y 〉. In general, II
is a symmetric (0, 2) tensor, and its eigenvalues (all real) are called principal
curvatures. We then set H = tr II the (scalar) mean curvature of the embedding

with respect to ν, and ~H = −Hν the mean curvature vector (note that H depends

on the choice of ν and ~H does not). The Gauss equation states that for an
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embedding Mn → Sn+1,

RS(X, Y, Z,W ) = RM(X, Y, Z,W ) + g(II(X,Z)ν, II(Y,W )ν)

− g(II(X,W )ν, II(Y, Z)ν).

Back to the discussion on (EE). In a local frame {ej}nj=0 with e0 a unit normal
of M , restricting (EE) to (e0, e0) gives (recall that g(e0, e0) = −1):

RicS(e0, e0) +
1

2
RS = T00.

Expanding the scalar curvature term, we have (again g(e0, e0) = −1):

1

2
RS = −

n∑
j=1

R0jj0 +
∑

1≤i<j≤n

Rijji = −RicS(e0, e0) +
∑

1≤i<j≤n

Rijji.

By the Gauss equation, we have:

RS
ijji = RM

ijji + IIii IIjj − II2
ij .

And hence 1
2
RS = −RicS(e0, e0) + 1

2
RM + 1

2
(tr II)2 − 1

2
| II |2. Plugging this into

(EE), we obtain:

RM + (tr II)2 − | II |2 = RS + 2 RicS(e0, e0) = 2T00. (1.1)

A similar computation via evaluating (EE) in (e0, ej) and the Codazzi equation
yields

divg(II−(trg II)g) = J := T (e0, ·). (1.2)

Together, (1.1) and (1.2) are called the Einstein constraint equations for (Mn, g|M , II).
A particularly important case is when II = 0 - in this case, (Mn, g|M) is called

time symmetric. Note that (1.2) is automatic, and the dominant energy condition
implies that T00 ≥ 0. Thus, the Einstein constraint equations implies that

RM ≥ 0.

Thus, manifolds with positive (or nonnegative) scalar curvature naturally arises
in mathematical general relativity.

1.2. Variation of total scalar curvature. Fix n ≥ 3. For a closed manifold
Mn, define the following Einstein-Hilbert functional on a Riemannian metric g:

R(g) =

∫
M

RgdVg.

Let us find when g is a critical point of R among volume-preserving deformations.
Let h be a compactly supported symmetric (0, 2) tensor. For small t, define

gt = g + th, and ḡt = vol(gt)
− 2

n gt. In local coordinates, recall that

Γkij =
1

2

∑
l

gkl(gil,j + gjl,i − gij,l),
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Ricij =
∑
k

(Γkij,k − Γkki,j +
∑
l

(ΓkklΓ
l
ij − ΓkjlΓ

l
ki)).

Without loss of generality, assume {xi} is normal at a point p. We compute the
derivatives of geometric quantities defined with gt (a dot means taking derivative
with respect to t) at p:

Γ̇kij =
1

2

∑
l

gkl(hil,j + hjl,i − hij,l),

Ṙicij =
∑
k

(Γ̇kij,k − Γ̇kki,j).

Use R =
∑
gij Ricij and (g−1)′ = −g−1ġg−1 (particularly (g−1)′ij = −hij at p),

we find

Ṙ =
∑
i,j

(
−hij Ricij +

∑
k

gij(Γ̇kij,k − Γ̇kki,j)

)
= −〈h,Ric〉+

∑
i,k

Γ̇kii,k −
∑
i,k

Γkki,i.

Observe that the second and third summand are both divergence terms1, which
integrates to zero by the divergence theorem. Also, we have that d

dt
dVgt =

1
2

trgt(h)dVgt . Hence we have

d

dt
R(gt) = −

∫
M

〈
h,Ricgt −

1

2
Rtgt

〉
dVgt .

Thus, we normalize with volume and obtain that

d

dt

∣∣∣∣
t=0

R(ḡt) = − vol(g)
2−n
n

∫
M

〈
h,Ricg−

1

2
Rgg +

n− 2

n
R(g)g

〉
dVg.

Proposition 1.1. If g is a critical point for R among volume preserving defor-
mations, then Ricg = cg for some constant c. In other words, such critical points
are Einstein metrics.

However, as we shall see very soon, the functional R is unbounded among all
metrics with unit volume.

1.3. Conformal deformations. Instead, we consider R(g) for g among a smaller
class of metrics. Take g0 a metric on Mn, n ≥ 3.

Definition 1.2. Define the conformal class of g0 as

[g0] = {g = e2ug0 : u ∈ C∞(M)},
and the Yamabe invariant of this conformal class as

Y ([g0]) = inf{R(g) : g ∈ [g0], vol(g) = 1}.
1In fact, a careful computation gives

Ṙ = −〈h,Ric〉+ divg divg h−∆(trg h).
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Lemma 1.3. The scalar curvature of g = u
4

n−2 g0 is given by

Rg = −c(n)−1u
n+2
n−2Lu,

where c(n) = n−2
4(n−1)

, L = ∆g0 − c(n)Rg0 is called the conformal Laplacian.

Proof. Set f = 2
n−2

log u so g = e2fg0. Take normal coordinates around a point
p. Use the expression of Christoffel symbols, we may relate Γ and Γ0:

Γkii = (Γ0)kij + δki ∂jf + δkj ∂if − δ
j
i ∂kf.

Putting these into the formula for Ricci curvature and obtain:

Ricij = (Ric0)ij − (n− 2)[∂i∂jf − (∂if)(∂jf)]− (∆g0f + (n− 2)|∇g0f |2)(g0)ij.

Take trace and obtain that

Rg = e−2f (Rg0 − 2(n− 1)∆g0f − 2(n− 1)(n− 2)|∇g0f |2).

Replace f = 2
n−2

log u and obtain the desired formula. �

We make two remarks here. First, since −L is self-adjoint, it has real eigen-

values. Second, note that dVg = u
2n
n−2dVg0 . Thus, we conclude that

R(g) = c(n)−1

∫
M

(
|∇g0u|2 + c(n)Rg0u

2
)
dVg0 .

Therefore, by the Sobolev inequality (note 2∗ = 2n
n−2

), we conclude that

Y ([g0]) = inf

{
c(n)−1

∫
M

|∇g0u|2 + c(n)Rg0u
2 :

∫
M

u
2n
n−2 = 1

}
.

exists.
It is natural to ask whether Y ([g0]) is achieved by u ∈ C∞(M). This is called

the Yamabe problem. By a simple computation, if u ∈ C∞(M) achieves Y ([g0]),

then g = u
4

n−2 g0 has constant scalar curvature. It is completely resolved by the
combined work of Yamabe, Trudinger, Aubin and Schoen.

Let us instead focus on a simpler yet important conformal invariant: the sign
of Y ([g0]). We have the following theorem.

Theorem 1.4. Let n ≥ 3, (Mn, g0) be a closed Riemannian manifold. Then the
conformal class [g0] belongs to exactly one of the following three cases:

(1) Y ([g0]) > 0⇔ there exists g ∈ [g0], Rg > 0 everywhere ⇔ λ1(−L) > 0.
(2) Y ([g0]) = 0⇔ there exists g ∈ [g0], Rg = 0 everywhere ⇔ λ1(−L) = 0.
(3) Y ([g0]) < 0⇔ there exists g ∈ [g0], Rg < 0 everywhere ⇔ λ1(−L) < 0.

Here λ1(−L) is the first eigenvalue of −L.

Proof. This is a direct consequence of the variational characterization of λ1:

λ1(−L) = inf
u∈C1(M)

∫
M
|∇u|2 + c(n)Rg0u

2∫
M
u2

,
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and the fact that the first eigenfunction is positive everywhere. �

Corollary 1.5. Let (Mn, g0) be a closed Riemannian manifold with n ≥ 3. If
R(g0) < 0 then Y ([g0]) < 0.

Proof. Taking u = 1 into the variational characterization of λ1(−L), we find that
λ1(−L) < 0. �

1.4. Basic constructions, the trichotomy theorem. We review some basic
constructions of Riemannian manifolds related to scalar curvature.

1.4.1. Warped product. Let us examine two basic warped products of manifolds.

Lemma 1.6. Given (Mn, g) and u ∈ C∞(M), u > 0. The warped product
(Mn × [−1, 1], g̃ = g + u2dt2) has scalar curvature

Rg̃ = Rg −
2∆gu

u
. (1.3)

Proof. At a point on M × [−1, 1], take coordinates {xj}nj=1 normal for M . We
have that

∇̃∂i∂t =
ui
u
∂t, ∇̃∂t∂t = −

∑
i

uiu∂i.

Since ∂1, · · · , ∂n, ∂tu is orthonormal, we have that

Rg̃ = Rg + 2
∑
i

(
〈∇̃2

∂i,∂t/u
(∂t/u), ∂i − ∇̃2

(∂t/u),∂i
∂t/u, ∂i

)
= Rg −

2∆gu

u
.

�

(1.3) will be used later in comparison with the stability inequality for minimal
hypersurfaces.

Lemma 1.7. Givem (Mn, g) and u ∈ C∞([−1, 1]), u > 0. The warped product
(Mn × [−1, 1], g̃ = u2g + dt2) has scalar curvature

Rg̃ = u−2Rg − 2n
u′′

u
− n(n− 1)

(u′)2

u2
. (1.4)

Proof. We provide here a proof which originates from the variation of surface
area. Denote by Σ = M × {t0}. Along Σ, ∂t is a unit normal vector field. Let
II be the second fundamental form of Σ ↪→ M × [−1, 1], and take {ei}ni=1 an
orthonormal frame locally on Σ.
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At a point on Σ, on one hand, by the Gauss equation, we have that

Rg̃ − 2 Ricg̃(∂t, ∂t) =
n∑

i,j=1

RM
ijji

=
n−1∑
i,j=1

(RΣ
ijji − IIii IIjj + II2

ij)

= RΣ −H2 + | II |2.
Here we used RΣ to denote the scalar curvature of Σ with the induced metric.
On the other hand, the vector field ∂t is pushing Σ with unit speed in its normal
direction. Using the second variation formula of area (we will see a more general
version of this later), we conclude that

∂H

∂t
= −Ricg̃(∂t, ∂t)− | II |2.

Putting these to cancel the Ricg̃ term, we have:

Rg̃ = RΣ − (H2 + | II |2)− 2
∂H

∂t
. (1.5)

Now we compute II and H with the tube formula [Gra04] (see also [Gro91, p.
39]). Indeed, we have that II = 1

2
d
dt
g|Σt , where Σt is equi-distant hypersurfaces

moving in the ∂t direction. Therefore, we have that

II = uutg, H = tru2g II = nutu
−1, | II |2 = n

(u′)2

u2
,

∂H

∂t
= n

(
u′

u

)′
.

(1.4) is obtained by plugging these into 1.5. �

1.4.2. Surgery. We recall the notion of surgery from topology. Given a manifold
Mn and an embedded Sp ×Dq ⊂M with p+ q = n, since

∂(Sp ×Dq) = Sp × Sq−1 = ∂(Dq+1 × Sq−1),

we may remove Sp ×Dq and glue in Dp+1 × Sq−1 along their common boundary
Sp × Sq−12, obtaining a new manifold M ′. We call p the dimension and q the
codimension of the surgery.

Theorem 1.8 (Schoen-Yau [SY79b], Gromov-Lawson [GL80]). If (M, g) satisfies
that Rg > 0 and M ′ is obtained from M by a codimension at least 3 surgery, then
M ′ admits a positive scalar curvature metric g′.

In fact, one may perform a surgery in a purely local fashing: the metric g′

can be chosen to equal g away from the surgery region, and its scalar curvature
decreases by an arbitrarily small amount within it.

2One should be careful that different gluing diffeomorphisms along Sp × Sq−1 may result in
manifolds that are not diffeomorphic.
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A particularly important case is when n ≥ 3 and p = 0. Performing a 0-surgery
on pj ∈Mj, j = 1, 2 gives the connected sum of M1 and M2, denoted by M1#M2.
Taking connected sums is a simple way to construct new manifolds with scalar
curvature lower bounds from existing ones.

1.4.3. The trichotomy theorem. We will use the above constructions to prove the
following.

Theorem 1.9. Every closed manifold Mn, n ≥ 3, admits a Riemannian metric
with negative scalar curvature.

By Corollary 1.5, it suffices to construct a metric with total negative scalar
curvature. We divide the construction into several steps.

We first observe that it suffices to construct a metric g on Sn, n ≥ 3, such
that R(g) < −1. Indeed, for any Riemannian manifold (Mn, g0), choose λ > 0
sufficiently small such that R(λ2g) = λn−2R(g) < −|R(g0)|. By Theorem 1.8, for
every δ > 0, there exists a metric g̃ on Mn#Sn, with sufficiently small surgery
region, such that |R(g̃) − R(g0) − R(λ2g)| < δ. Therefore the metric g̃ has
negative total scalar curvature.

We now focus on the construction of g, which builds upon (1.5).

Proposition 1.10. Suppose (Mn
i , gi), i = 1, 2, are compact manifolds with iso-

metric boundary Σ. For each ε > 0, there exists a smooth metric gε on M =
M1 tΣ M2, g = gj away from the ε-neighborhood of Mj, and∣∣∣∣∫

M

RgεdV −
∫
M1

Rg1dV −
∫
M2

Rg2dV − 2

∫
Σ

(H1 +H2)dA

∣∣∣∣ < ε. (1.6)

Here H1, H2 are the mean curvature of Σ embedded in M1,M2, respectively, taken
with respect to the outward unit normal vector field.

Sketch of proof. Set M = M1 tΣ M2, where we identify ∂M1 and ∂M2 by the
isometry. M is a smooth manifold with Σ embedds into it. On M , define a
metric g such that g = gj in Mj ⊂ M . Then g is smooth up to Σ from both
sides, and is only Lipschitz along Σ.

Take Fermi coordinates on both sides of Σ, and let t be the signed distance
function from Σ such that ∂t points into M2. The mean curvature of t-level sets
are well defined and may be discontinuous along Σ. Still, (1.5) implies that:

RM = RΣ − (H2 + | II |2)− 2
∂H

∂t
.

Note that the RHS of this expression is bounded even along Σ, except possibly
for the last term. On the other hand, the last term has a distribution along Σ,
which equals to −H2 −H1 (note that H2 is taken with respect to −∂t). (1.6) is
formally obtained by integrating this expression.

�
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Remark 1.11. In [Mia02], Miao carried out this smoothing rigorously. Precisely,
he computed the scalar curvature, using (1.5), for a fiber wise mollification of the
metrics gt of equi-distant hypersurfaces from Σ.

Remark 1.12. Gluing/smoothing construction of scalar curvature has been
extensively investigated, see, for instance, [BMN11, BH23]. In particular, if
H1 + H2 > 0 holds along Σ, then there exists a smooth of g which preserves
pointwise scalar curvature lower bounds.

To finish the proof of Theorem 1.9, we write Sn = Sn+ t Sn−. Pick p ∈ Sn−1 =
∂Sn+ = ∂Sn−. Locally near p, Sn−1 is C1 close to Rn−1.

Since n ≥ 3, one may attach a sequence of spheres (Sn−1) with small radius
inside Sn+ near p, such that

∫
Sn−1 HdA < −100. Denote the outcome by (Sn+, g1).

Apply the same construction and obtain (Sn−, g2) such that g1|Sn−1 = g2|Sn−1 .
Apply Proposition 1.10, since

∫
Sn−1(H1 +H2) < −200, we may smooth the metric

and obtain a smooth metric on Sn with negative total scalar curvature.
Using a similar idea, one may prove that R(g) is unbounded among metrics

with unit volume. We leave this as an exercise.
In [KW75], Kazdan-Warner proved the following trichotomy for Riemannian

manifolds.

Theorem 1.13. Let n ≥ 3. For a closed manifold Mn, exactly one of the fol-
lowing three statements hold on M :

(1) Every f ∈ C∞(M) can be realized as the scalar curvature function of a
Riemannian metric g.

(2) f ∈ C∞(M) can be realized as the scalar curvature function of a Rie-
mannian metric if and only if f < 0 somewhere or f = 0 everywhere.

(3) f ∈ C∞(M) can be realized as the scalar curvature function of a Rie-
mannian metric if and only if f < 0 somewhere.

In fact, it was proved by Lohkamp [Loh95] that scalar curvature (even Ricci
curvature!) satisfies a h-principle: one may locally arbitrarily decrease scalar
curvature of any metric with a small C0 perturbation. It is thus concluded
that having (somewhere) negative scalar curvature does not put any topological
condition on a manifold. However, from Theorem 1.13, only manifolds in class
(1) admits a metric with positive scalar curvature (PSC); manifolds in class (2)
admits a metric g with Rg = 0, but no PSC metric.

Example 1.14. K3 surface. M = {
∑4

j=1 x
4
j = 0 : [x1, x2, x3, x4] ∈ CP 3} admits

a Ricci flat (hence scalar flat) metric by the Calabi-Yau theorem. However, it
does not admit any PSC metric.

Futaki [Fut93] proved that if a simply connected manifold of dimensions at
least 5 is in class (2), then it is the product of manifolds with special holonomy.
On the other hand, closed simply connected manifolds with holonomy in G2 or
SU(4k + 3) do admit PSC metrics, see [DWW05].
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2. The obstruction problem, Schoen-Yau descent

Problem 2.1 (The obstruction problem for PSC). Determine which smooth
closed manifold Mn admits a Riemannian metric with positive scalar curvature.

Problem 2.1 has been a central topic in geometric analysis. Numerous tools
have been developed for its investigation:

(1) Spinors. Lichnerowicz formula: for a section of the spinor bundle, one has

D2 = ∇∗∇+
1

4
Rg.

Here D is the Dirac operator. Thus, if Rg > 0 on a closed manifold,

kerD = {0}. This implies that Â(M) = 0 via the Atiyah-Singer index
theorem. This approach has far-reaching consequences on the topology of
PSC manifolds.

Theorem 2.2 ([GL80],[Sto92]). Let n ≥ 5 and Mn is a closed manifold
with π1(M) = 0. Then M admits a PSC metric if and only if:
(a) M is not spin,
(b) or M is spin and α(M) = 0.

Here α(M) is the α invariant of M .

(2) Minimal hypersurfaces. This is the focus of the remaining lectures.
(3) Ricci flow and the inverse mean curvature flow (especially in 3 dimen-

sions).
(4) Level sets of harmonic functions (currently for 3-manifolds).
(5) Seiberg-Witten invariants for 4-manifolds.

Example 2.3. K3 surface. For a closed 4-manifold M , Â(M) = −1
8
σ(M), here

σ(M) denotes the signature. Thus, Â(K3) = −2.

A crucial example for the obstruction problem was the following:

Conjecture 2.4 (Geroch conjecture). For all n ≥ 2, the n-dimensional torus T n

admits no PSC Riemannian metric.

Conjecture 2.4 was proved in the affirmative by Schoen-Yau (at least when
n ≤ 7) and independently by Gromov-Lawson. The two proofs are entirely
different, and have both motivated exciting developments. We will focus on the
Schoen-Yau proof using minimal hypersurfaces. We will use the following result
from geometric measure theory.

Theorem 2.5. For n ≤ 7, suppose (Mn, g) is a closed oriented Riemannian
manifold. For any α ∈ Hn−1(M,Z), there exists an area minimizing representa-
tive

α = [Σ1] + · · ·+ [Σk].

In particular, {Σj}kj=1 is a disjoint union of embedded two-sided area minimizing
hypersurface.
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2.1. First and second variation of minimal hypersurfaces. Given a two-
sided immersion Σn−1 →Mn, suppose F : Σn−1× (−ε, ε)→Mn is a variation in
the sense that:

(1) F (·, t) : Σ→M is an immersion;
(2) F (·, 0) = id;
(3) F (·, t) = id outside a compact subset of Σ.

Without loss of generality, let us assume that F is a normal variation, that is,
∂
∂t
Ft = ftνt, where νt is a choice of unit normal vector field on Σt := imF (·, t).

Theorem 2.6. For a variation F with ∂
∂t
|t=0Ft = f ∈ C∞0 (Σ), we have that:

d

dt

∣∣∣∣
t=0

vol(Σt) =

∫
Σ

Hf,

d2

dt2

∣∣∣∣
t=0

vol(Σt) =

∫
Σ

|∇f |2 − (| II |2 + Ric(ν, ν))f 2 +H2f 2 +Hḟ.

In fact, both formulas have pointwise version as follows:

d

dt
dVΣt = HtftdVΣt ,

d

dt
H = −∆f − (Ric(ν, ν) + | II |2)f.

On Σ, we call J = −∆ − (Ric(ν, ν) + | II |2) the Jacobi operator. J is elliptic
and self-adjoint.

Definition 2.7. Call a two-sided immersion Σn−1 → (Mn, g) minimal, if H = 0
along Σ. Thus, Σ is minimal if and only if d

dt
|t=0 vol(Σt) = 0 for all variations.

Call a minimal immersion Σ → (Mn, g) stable, if d2

dt2
|t=0 vol(Σt) ≥ 0 for all

variations. When Σ is two-sided, stability is equivalent to∫
Σ

|∇f |2 − (Ric(ν, ν) + | II |2)f 2 ≥ 0, ∀f ∈ C∞0 (Σ).

By the variational characterization of the first eigenvalue, a two-sided minimal
immersion Σn−1 → (Mn, g) is stable if and only if λ1(J) ≥ 0.

2.2. Proof of Geroch when n = 3. Assume (T 3, g) has Rg > 0. Since take
generators {dx1, dx2, dx3} of H2(T 3,Z) ' Z3. Consider the minimization prob-
lem

inf

{
area(Σ) : Σ2 ⊂ T 3,

∫
Σ

dx1 ∧ dx2 = 1

}
.

Since the integration defines an integral homology class in H2(M), we fine an
embedded two-sided stable minimal surface Σ = Σ1 + · · · + Σk. Therefore, on
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each Σj, we have that∫
Σj

|∇f |2 − (Ricg(ν, ν) + | II |2)f 2 ≥ 0, ∀f ∈ C∞(Σj).

We derive a contradiction as follows. On one hand, we claim that H1(Σ,R) 6= 0.
To see this, set ωj = [dxj|Σ] ∈ H1

dR(Σ,R), j = 1, 2. Then we have that ωj 6= 0.
Otherwise, if ω1 = df , then we have that

1 =

∫
Σ

ω1 ∧ ω2 =

∫
Σ

df ∧ ω2 =

∫
Σ

d(f ∧ ω2)− f ∧ dω2 = 0.

On the other hand, fix j ∈ {1, · · · , k}. We use the Gauss equation to rewrite the
curvature terms in the stability inequality as follows. Take a local orthonormal
frame on Σ with en = ν. Then

RM − 2 Ricg(ν, ν) =
n−1∑
i,j=1

RM
ijji

=
n−1∑
i,j=1

(RΣ
ijji − IIii IIjj +| IIij |2)

= RΣ −H2 + | II |2.
Thus, we have that

Ricg(ν, ν) + | II |2 =
1

2
(RM −RΣ + | II |2 +H2). (2.1)

Therefore, the stability inequality implies that∫
Σj

|∇f |2 +
1

2
RΣj

f 2 ≥
∫

Σj

1

2
(RM + | II |2)f 2 > 0, ∀f ∈ C∞(Σj).

Take f = 1 above. Note that Σj is a 2-dimensional surface, so 1
2
RΣj

= KΣj
.

Thus, the Gauss-Bonnet theorem implies that

2πχ(Σj) =

∫
Σj

KΣj
> 0,

and hence Σj is diffeomorphic to S2. Therefore, Σ is the disjoint union of two-
spheres, and thus does not support any nontrivial class in H1, contradiction.

2.3. Schoen-Yau descent, minimal slicing. Inductive descent argument: con-
struct a nested family of oriented submanifolds

Σk ⊂ Σk+1 ⊂ · · · ⊂ Σn = (Mn, g),

such that dim Σk = k. Assuming Rg > 0 on M , we would also like to construct a
PSC metric on each Σk. Such a nested family is called a k-slicing. The existence
of a k-slicing is usually guaranteed by topological assumptions, particularly that
the homology of Mn is sufficiently large.
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Example 2.8. A trivial example of a k-slicing of minimal submanifolds can be
constructed in Xk × T n−k, equipped with a product metric g + g0, where g0 is the
flat product metric on T n−k. In this case, we may take the nested family of totally
geodesic embeddings

X ⊂ X × S1 ⊂ · · · ⊂ X × T n−k.

We now describe two approaches to carry out the inductive descent argument.

2.3.1. Conformal descent. The first approach, called the conformal descent argu-
ment, utilizes the connection between Jacobi operator of minimal hypersurfaces
and the conformal Laplacian.

Proposition 2.9. Suppose Σn−1 ⊂ (Mn, g) is a two-sided stable minimal hyper-
surface, and Rg > 0. Then the induced metric on Σ is Yabame positive - that is,
it has pointwise positive scalar curvature after a conformal change.

Proof. We write the stability inequality on a minimal hypersurface using the
Schoen-Yau rearrangement (2.1): for all f ∈ C∞0 (Σ), we have∫

Σ

|∇f |2 − 1

2
(RM −RΣ + | II |2)f 2 ≥ 0 ⇒

∫
Σ

|∇f |2 +
1

2
RΣf

2 > 0.

Recall that the conformal Laplacian on Σ is given by L = −∆ + c(n)RΣ with
c(n) = n−3

2(n−2)
. Using the fact that 1

2
> n−3

2(n−2)
, we have that for all f ∈ C∞0 (Σ),∫

Σ

2|∇f |2 +RΣf
2 > 0 ⇒

∫
Σ

2(n− 2)

n− 3
|∇f |2 +RΣf

2 > 0.

Thus, λ1(L) > 0. By Theorem 1.4, we conclude that [g|Σ] is Yamabe positive. �

Therefore, if we may inductively construct Σk ⊂ Σk+1 as a stable minimal
embedding, then

Σk+1 is PSC ⇒ Σk is PSC.

Proposition 2.10. For 2 ≤ n ≤ 7, if Mn is a closed manifold with ω1, · · · , ωn−1 ∈
H1
dR(M,R) such that ω1 ∧ · · · ∧ ωn−1 6= 0 ∈ Hn−1

dR (M,R), then M does not admit
a PSC metric.

Proof. Induction on n. When n = 2, the only PSC 2-dimensional manifold is
diffeomorphic to S2, which does not have any nontrivial element in H1

dR. For
3 ≤ n ≤ 7, we use the de Rham theorem to find an integral homology class
α ∈ Hn−1(M,Z) and an area minimizing hypersurface Σn−1 representing α such
that ∫

Σn−1

ω1 ∧ · · · ∧ ωn−1 6= 0.

With the same proof as before, we see that

ω1|Σn−1 , · · · , ωn−1|Σn−1 6= 0 ∈ H1
dR(Σn−1,R).
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Also the above gives that ω1|Σn−1 ∧ · · · ∧ ωn−2|Σn−1 6= 0 ∈ Hn−2
dR (Σn−1,R). This

finishes the proof, since if M carries a PSC metric, then so does Σn−1, contradic-
tion. �

2.3.2. Warped product descent. The second approach, called the warped product
descent (also called S1-symmetrization technique by Gromov), uses a connection
between (1.3) and the stability inequality. This approach is more quantitative,
as it preserves the scalar curvature lower bound in the descent.

Again, suppose that Σn−1 ⊂ (Mn, g) is a compact two-sided stable minimal
hypersurface. The stability inequality and the Schoen-Yau rearrangement (2.1)
implies that λ1(−∆− 1

2
(RM−RΣ + | II |2)) ≥ 0. Therefore, the first eigenfunction

u of J satisfies that u > 0 and

−∆u+
1

2
RΣu =

1

2
(RM + | II |2 + λ1)u (2.2)

on Σ.
Consider the warped product (Σ×S1, g̃ = gΣ + u2dt2). By (1.3), we have that

R(g̃) = RΣ − 2u−1∆u

≥ RΣ + 2u−1

(
1

2
(RM −RΣ + | II |2) + λ1

)
u

= RM + λ1.

Hence the scalar curvature lower bound is preserved.
Next, we seek to minimize volume of Σn−2 × S1 ⊂ (Σn−1 × S1, g̃). That is:

inf
{

volg̃(Σn−2 × S1) : Σn−2 ⊂ Σn−1 represents a homology class α ∈ Hn−2(Σn−1,Z)
}
.

Equivalently, we consider

inf

{∫
Σn−2

un−1 : Σn−2 ⊂ Σn−1 representing α

}
,

here un−1 is the first eigenfunction of the Jacobi operator on Σn−1.
Inductively, suppose we have constructed Σn−k+1. We then minimize

Σn−k × T k−1 ⊂
(
Σn−k+1 × T k−1, gn−k+1 + u2

n−k+1dt
2
n−k+1 + · · ·+ u2

n−1dt
2
n−1

)
among hypersurfaces Σn−k in a suitable homology class of Σn−k+1, gn−k+1 is the
induced metric of Σn−k+1 ⊂ M . Equivalently, we may minimize the weighted
volume ∫

Σn−k

un−k+1 · · ·un−1.

Finally, we choose un−k be the first eigenfunction of the Jacobi operator (with
respect to the weighted volume functional) on Σn−k.

Let us carry this out in details when n = 4.
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Setup: Let Γ3 ⊂ (M4, g) be stable minimal, u > 0 be the first Jacobi eigen-
function on Γ, satisfying −∆Γu− 1

2
(RM −RΓ + | II |2)u ≥ 0. Let Σ2 ⊂ Γ be stable

for

A(Σ) =

∫
Σ

udA.

Our goal is to deduce geometric consequences on Σ.
For this, let’s compute the first and second variation of A. Let ϕ be the speed

of a normal variation such that ϕ̇ = 0 (this can be arranged, for instance, by
taking normal exponential maps with speed ϕ). Differentiating each term, we
get:

d

dt

∣∣∣∣
t=0

A(Σt) =

∫
Σt

〈∇Γu, ν〉ϕ+ uHϕdA.

Hence on Σ we have that

H = −u−1 〈∇Γu, ν〉 .

To differentiate this again to find the second variation, we note that ν̇ = −∇Σϕ.
Indeed, denote by F : Σ× (−ε, ε)→M the variation. Take local coordinates on
xi such that dF (∂i) is normal at a point. ∂tν = ∇Σϕ follows from 〈∂tν, ν〉 = 0
and that

〈∂tν, ∂iF 〉 = −〈∂t∂iF 〉 = −〈∂i∂tF, ν〉 = −〈∂i(ϕν), ν〉 = −∂iϕ.

Therefore, we find that

d2

dt2
A(Σt) =

∫
Σ

∇2
Γu(ν, ν)ϕ2 − 〈∇Γu,∇Σϕ〉ϕ+ 〈∇Γu, ν〉Hϕ2

− u(−∆Σu+ (RicΓ(ν, ν) + | IIΣ |2)ϕ)ϕ+ uH2ϕ2.

Next, we use the basic relation that (check this yourself)

∇2
Γu(ν, ν) = ∆Γu−∆Σu+ 〈∇Γu, ν〉H.

Use the Schoen-Yau rearrangement trick to write RicΓ(ν, ν) + | IIΣ |2 = 1
2
(RΓ −

RΣ + | IIΣ |2 +H2). Rearranging terms and plugging in the expression for H, we
have:

0 ≤
∫

Σ

(∆Γu−
1

2
RΓu)ϕ2 −∆Σuϕ

2 − 3

2
u−1 〈∇Γu, ν〉2 ϕ2

− 〈∇Σu,∇Σϕ〉ϕ− uϕ∆Σϕ+
1

2
uRΣϕ

2 − 1

2
u| IIΣ |2ϕ2.

We throw away the last terms on each line above and. Use the assumption that
∆Γu− 1

2
RΓu ≤ −1

2
RMu and integrate by parts (here all geometric operations are
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with respect to the induced metric on Σ):∫
Σ

1

2
RMuϕ

2 ≤
∫

Σ

−∆uϕ2 − 〈∇u,∇ϕ〉ϕ− uϕ∆ϕ+
1

2
uRΣϕ

2

=

∫
Σ

−∆uϕ2 + u|∇ϕ|2 + uKΣϕ
2.

Note that we have no further information on u, and hence we would like to
cancel the terms involving u altogether. Set ϕ = u−

1
2ψ and expand ∇ϕ =

u−
1
2∇ψ − 1

2
u−

3
2ψ∇u. Thus,∫

Σ

1

2
RMψ

2 ≤
∫

Σ

−∆uu−1ψ2 − u−1 〈∇u,∇ψ〉ψ +
1

4
u−2|∇u|2ψ2 +KΣψ

2 + |∇ψ|2

=

∫
Σ

−3

4
u−2|∇u|2ψ2 + u−1 〈∇u,∇ψ〉ψ + |∇ψ|2 +KΣψ

2.

Finally, use AM-GM:

−3

4
u−2|∇u|2ψ2 + u−1 〈∇u,∇ψ〉ψ − 1

3
|∇ψ|2 ≤ 0.

Hence we conclude that∫
Σ

1

2
RMψ

2 ≤
∫

Σ

4

3
|∇ψ2|+Kψ2, ∀ψ ∈ C∞(Σ).

Plugging in ψ = 1 everywhere and using RM > 0, we conclude that Σ is the
disjoint union of two-spheres by the Gauss-Bonnet theorem. In general, we have
that:

Theorem 2.11 (Schoen-Yau). Let n ≤ 7. Suppose (Mn, g) satisfies Rg > 0, and
a weighted minimal k-slicing defined above exists. Then for each k ≤ j ≤ n− 1,
Σj is Yamabe positive. In particular, if k = 2, then Σ2 is a union of two-spheres.

By an argument completely analogous to the proof of Proposition 2.10, if Mn is
a closed manifold with ω1, · · · , ωn−k+1 ∈ H1

dR(Mn,R) such that ω1∧· · ·ωn−k+1 6=
0, then a minimal k-slicing exists.

Corollary 2.12. Suppose 3 ≤ n ≤ 7. if Mn is a closed manifold admitting a
map of nonzero degree to T n, then Mn does not carry a PSC Riemannian metric.

Proof. Let f : M → T n be a map with nonzero degree, and let ωj = f ∗(dxj),
j = 1, · · · , n. Then∫

M

ω1 ∧ · · · ∧ ωn = (deg f)

∫
Tn

dx1 ∧ · · · ∧ dxn 6= 0.

�
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3. Geometric estimates, spectral extensions, µ-bubbles

Previously, we proved the following:

• A stable minimal Σ2 ⊂ (M3, g) with Rg ≥ 1 satisfies

λ1(−∆Σ +
1

2
RΣ) ≥ 1

2
.

• Suppose (M3, g) satisfies λ1(−∆ + 1
2
RΣ) ≥ λ > 0 and let u > 0 be the

first eigenfunction of −∆+ 1
2
RM . Then a weighted stable minimal surface

Σ2 (with weight u) satisfies

λ1(−4

3
∆Σ +

1

2
RΣ) ≥ λ.

For more applications of (weighted) stable minimal surfaces, we would need to
derive more precise geometric estimates on its size. We start witht the following
simple observation.

Proposition 3.1. Suppose (M3, g) satisfies Rg ≥ 2. Then any connected two-
sided stable minimal surface Σ2 ⊂M3 satisfies that area(Σ) ≤ 4π.

Proof. Plug f = 1 in ∫
Σ

|∇f |2 +KΣf
2 ≥

∫
Σ

f 2

(note that this follows from stability and taht Rg ≥ 2). We have:

area(Σ) ≤ 2πχ(Σ).

Thus Σ ' S2 and the above becomes area(Σ) ≤ 4π. �

Remark 3.2. There is an interesting related rigidity result by Brendle-Bray-
Neves: if π2(M) 6= 0, then the least area homotopically nontrivial surface Σ must
have area at most 4π. Moreover, if area(Σ) = 4π, then M is covered by S2(1)×R.

3.1. Diameter estimates. Recall the classical Bonnet’s theorem.

Theorem 3.3 (Bonnet). Suppose that (Σ2, g) has either empty or compact bound-
ary, and satisfies Kg ≥ 1. Then the length of any stable geodesic segment is ≤ π.
Consequently,

(1) If ∂Σ = ∅, then diam(Σ, g) ≤ π.
(2) If ∂Σ 6= ∅, then dist(p, ∂Σ) ≤ π for all p ∈ Σ.

An important observation due to Schoen-Yau states that one may replace the
pointwise curvature condition by a spectral one and still obtain diameter esti-
mates.

Theorem 3.4 (Schoen-Yau [SY83]). Suppose that (Σ2, g) has either empty or
compact boundary, and satisfies that λ1(−∆ +K) ≥ 1. Then:

(1) If ∂Σ = ∅ then diam(Σ, g) ≤ 2√
3
π.
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(2) If ∂Σ 6= ∅ then dist(p, ∂Σ) ≤ 2√
3
π for all p ∈ Σ.

Remark 3.5. In fact, for all a ∈ (0, 4), one may replace the condition to
λ1(−a∆ + K) ≥ 1 and obtain analogous conclusions with upper bound 2√

4−aπ.

The range a < 4 is sharp: the hyperbolic space satisfies that λ1(−∆) = 1
4

and
hence λ1(−4∆ +K) = 0.

Proof. We give a proof that is closely related to the minimal slicing idea. Take
u > 0 the first eigenfunction of −∆ + K. Then −∆u + Ku ≥ u. Consider a
warped product g̃ = g + u2dt23. Then we have that R̃ ≥ 1. Fix points p, q ∈ Σ.
We minimize, among all unit-speed curves γ : [0, l] → Σ connecting p, q, the
functional ∫

γ

uds =

∫ l

0

u(γ(s))ds.

Equivalently, we minimize the area of γ×S1 ⊂ (Σ×S1, g̃). The stability inequality
for the area functional implies that∫

γ×S1

[
1

2
(R̃ + |ĨI|2)− K̃

]
ϕ2udtds ≤

∫
γ×S1

|∇̃ϕ|2udtds,

for all S1 invariant compactly supported functions ϕ. Plug in R̃ ≥ 1 and K̃ = −u′′

u

and get (throw away the | II |2 term):∫ l

0

ϕ2uds+

∫ l

0

u′′

u
ϕ2uds ≤

∫ l

0

(ϕ′)2uds.

As before, set ϕ = u−
1
2ψ, integrate by parts and use the AM-GM inequality to

bound all terms involving u, we find:∫ l

0

ψ2 ≤ 3

4

∫ l

0

(ψ′)2.

But we know λ1(− d2

dt2
) = π2

l2
. This gives l ≤ 2√

3
π.

�

This gives a more quantitative control of minimal slicings: given

Σk ⊂ · · · ⊂ Σn−1 ⊂ (Mn, g)

a weighted minimal slicing with Rg ≥ 1, we have:

(1) If k = 2, then Σ2 is a disjoint union of S2 with area ≤ 4π and diameter
≤ 2√

3
π.

(2) If k = 1, then Σ1 is a disjoint union of S1 with length ≤ 4√
3
π.

3For the more general version, one considers g̃ = g + u2adt2.
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3.2. µ-bubbles. We have seen that a crucial property on a submanifold we seek
is the eigenvalue condition λ1(−∆ + 1

2
R) ≥ λ > 0. So far, we rely on stable

minimal hypersurfaces to guarantee this condition. However, minimal surfaces
(let along stable minimal surfaces) do not always exist under the PSC condition.
To illustrate this, consider a simple situation where M ' Σ×[−1, 1]. One may not
find any minimal surface at all without appropriate assumptions on the boundary
Σ× {±1}.

In a seminal work, Gromov [Gro20] proved the following band width estimate
for manifolds with scalar curvature.

Theorem 3.6 (Gromov [Gro20]). Let 2 ≤ n ≤ 6. Suppose g is a metric on
T n × [−1, 1] satisfying Rg ≥ n(n+ 1). Then

dg(T
n × {−1}, T n × {1}) ≤ 2π

n+ 1
.

Remark 3.7. In Theorem 3.6, no boundary conditions are assumed along T n ×
{±1}.

Remark 3.8. The constant 2π
n+1

is sharp, as illustrated by the following example.
Let g be a flat metric on T n, u ∈ C∞([−1, 1]). Recall from (1.4) that the metric
g̃ = u2g + dt2 has scalar curvature

Rg̃ = −2n
u′′

u
− n(n− 1)

(u′)2

u2
.

Setting h = nu
′

u
(note that h(t) is the mean curvature of T n×{t}), we have that

Rg̃ + 2h′ +
n+ 1

n
h2 = 0. (3.1)

If we ask that Rg̃ = n(n+ 1), then a solution to (3.1) is given by

h(t) = −n tan

(
n+ 1

2
t

)
⇒ u(t) =

(
cos(

n+ 1

2
t)

) 2
n+1

.

Note that u > 0 on the interval (− π
n+1

, π
n+1

), having length 2π
n+1

.

Gromov’s idea is to find a hypersurface that minimizes a prescribed mean
curvature functional, trading minimality for existence in more general situations.

Given M = T n× [−1, 1], denote by M− = T n×{−1}, M+ = T n×{1}. For an
open set Ω containing ∂−M , let Σ be the hypersurface defined as ∂Ω = Σ−∂−M
(here we are treating each term as oriented objects). Among all such Ω, we
minimize

A(Ω) = |Σ| −
∫

Ω

h,

for some h ∈ C∞(M).
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Theorem 3.9 (Existence of minimizer). Suppose 2 ≤ n ≤ 6. Equip ∂±M with
unit normal vector fields pointing the same was as ∂t. Suppose that

h|∂−M > H∂−M , h|∂+M < H∂+M .

Then A(M) is minimized by a set Ω ⊂M with smooth boundary, and Σ is disjoint
from ∂±M .

Sketch of proof. The key is to show that the minimizer Ω of A separates ∂−M
and ∂+M . To do this, one checkes that by adding a neighborhood of ∂−M or
removing a neighborhood of ∂+M , A is decreased. �

The separating hypersurface Σ is called a µ-bubble after Gromov. We compute
the first and second variation of µ-bubbles. Deform Σ in the normal direction by
vector fields ftνt. This also generates a variation Ωt of Ω.

Theorem 3.10. We have:

d

dt
A(Ωt) =

∫
Σt

(H − h)fdA. (3.2)

If Ω is stationary for A, then

d2

dt2

∣∣∣∣
t=0

A(Ωt) =

∫
Σ

|∇f |2 − (RicM(ν, ν) + | II |2 + 〈∇Mh, ν〉)f 2. (3.3)

From (3.2), any A-stationary Ω satisfies that HΣ = h|Σ. Thus, theA functional
is usually called the prescribed mean curvature functional. The key point is to
combine the second variation, (3.3) with the Schoen-Yau rearrangement trick
(2.1) as follows. On Σ, we have that

| II |2 ≥ 1
n
(trg II)2 = 1

n
H2 = 1

n
h2.

Thus, (3.3) implies that∫
Σ

|∇f |2 ≥
∫

Σ

[
1

2
(RM −RΣ +

n+ 1

n
h2) + 〈∇Mh, ν〉

]
f 2,

⇒
∫

Σ

|∇f |2 +
1

2
RΣf

2 ≥ 1

2

∫
Σ

(
n(n+ 1) +

n+ 1

n
h2 + 2 〈∇Mh, ν〉

)
f 2. (3.4)

Therefore, suppose that we may choose a prescribing function h ∈ C∞(M̊) such
that:

(1) h(p)→∞ as p→ ∂−M , h(p)→ −∞ on p→ ∂+M ;
(2) n(n+ 1) + n+1

n
h2 − 2|∇Mh| > 0 everywhere.

Then Theorem 3.9 guarantees the hypersurface Σ satisfying (3.4), and hence

λ1(−∆ +
1

2
RΣ) > 0.
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In particular we know that Σ is Yamabe positive. On the other hand, the projec-
tion map M = T n× [−1, 1]→ T n, restricted on Σ, has degree one, contradicting
Corollary 2.12.

Comparing with (3.1), we construct such a function h. Assume, for the sake
of contradiction, that dist(∂−M,∂+M) > L > 2π

n+1
. Choose ρ a smoothing of

dist(·, ∂−M) such that

∂−M = ρ−1(0), ∂+M = ρ−1(L), |Lip ρ| ≤ 1.

Set

h(p) = −n tan
(π
L
ρ(p)− π

2

)
.

By a direct computation,

|∇h| < n(n+ 1)|Lip ρ|
2 cos2( π

L
ρ− π

2
)
,

and thus n(n+ 1) + n+1
n
h2 − 2|∇h| > 0. This finishes the proof.

4. Applications and open questions

In this section we discuss some applications of these quantitative estimates.

4.1. Apherical manifolds. Since the solution of the Geroch conjecture, there
have been extensive investigations on various generalizations. A well-known con-
jecture in this direction is the following.

Conjecture 4.1. A closed aspherical manifold Mn does not admit any Riemann-
ian metric with positive scalar curvature.

Recall that a manifold Mn is called aspherical, if for all k ≥ 2, πk(M) = 0.
Equivalently, the universal cover M̃ is contractible. Since the only nontrivial ho-
motopy group of M is the fundamental group, such M is the Eilenberg-MacLane
space K(π, 1) of its fundamental group π.

Example 4.2. (1) T n is aspherical, since its universal cover, Rn, is con-
tractible.

(2) All hyperbolic manifolds (i.e. manifolds admitting a metric with constant
sectional curvature −1) are aspherical, since they are all covered by Hn.

(3) More generally, if a manifold Mn admits a metric g with nonpositive
sectional curvature, then it is aspherical. Indeed, the universal cover is
diffeomorphic to Rn by the Cartan-Hadamard theorem.

Aspherical manifolds exist in abundance, and they are important objects in
algebraic topology. Rosenberg [Ros83, Theorem 3.5] proved that a certain version
of the (still open) strong Novikov conjecture implies Conjecture 4.1.

Let us try to get a feeling of the statement in low dimensions. When n = 3,
we have the following decomposition theorem:
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Theorem 4.3 (Kneser, Milnor ([Mil62])). Any closed 3-manifold M can be
uniquely decomposed into prime factors:

M = X1# · · ·#Xa#
(
#b

1S
2 × S1

)
#K1# · · ·#Kc,

where each Xi has finite fundamental group, and each Kj has universal cover
diffeomorphic to R3.

Remark 4.4. The resolution of Poincaré conjecture implies that each Xi is dif-
feomorphic to S3/Γj. More generally, Thurston’s geometrization gives a full
classification of the Kj factors, but we won’t need to use it here.

The relevance of the aspherical 3-manifolds and scalar curvature can be high-
lighted in the following result.

Theorem 4.5 (Schoen-Yau [SY79a], Gromov-Lawson [GL80]). If a closed ori-
ented 3-manifold admits a PSC metric, then there is no aspherical factors in its
prime decomposition.

In our first application, let us prove this Conjecture 4.1 for 3-manifolds.

Theorem 4.6. An aspherical 3-manifold does not admit a metric with positive
scalar curvature.

We begin with the following topological facts. Let (Mn, g) be a closed aspher-
ical manifold. The following facts hold.

(1) The universal cover M̃ is noncompact. This is because any connected
compact n-manifold X satisfies that Hn(X,Z2) = Z2.

(2) (M̃, g) has a length-minimizing geodesic σ : R → M̃ . The existence of
such a geodesic line holds for all noncompact universal covers of closed
manifolds.

(3) For each L > 0, there exists an (n− 2)-dimensional cycle Γ whose linking
number with σ equals 1, and dist(Γ, σ) > L. This can be constructed by
taking suitable intersections of σ(R) and σ((−∞, 0]).

Proof of Theorem 4.6. Without loss of generality assume Rg ≥ 2. Take the geo-

desic line σ and the linking 1-cycle γ in (M̃, g) (with slight abuse of notation, we
use g to denote the pull back metric in M̃ by the covering map) as above, with
L > 2√

3
π. Since M̃ is simply connected, γ is null-homologous. We take Σ to be

the area-minimizing surface with boundary Σ. Then Σ ∩ σ 6= ∅. By the stability
inequality, we have that

λ1(−∆Σ +KΣ) ≥ 1

2
RM̃ ≥ 1.

By Theorem 3.4, for every p ∈ Σ,

distΣ(p, γ = ∂Σ) ≤ 2√
3
π.
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However, this means that σ ∩ Σ = ∅, contradiction. �

Conjecture 4.1, when n ∈ {4, 5}, was proved by Chodosh-Li [CL24] and inde-
pendently by Gromov [Gro20]. We will sketch a proof here for the case n = 4.

Proof of Conjecture 4.1 when n = 4. Without loss of generality assume thatRg ≥
4. Take the same construction of a linking geodesic line σ and a 2-cycle Σ0 in the
universal cover (M̃, g), such that dM̃(σ,Σ0) > L for some L to be chosen later.

As before, we take a homologically minimizing hypersurfaceN3 such that ∂N =
Σ0. The stability inequality implies that λ1(−∆N + 1

2
RN) ≥ 2. Now we run into

an issue: a three-manifold with RN ≥ 4 may have arbitrarily large diameter, so
a direct analogy of the previous proof does not work.

The idea is to use µ-bubbles. For simplicity we first prove the following.

Proposition 4.7. Suppose (N3, g) has Rg ≥ 4, ∂N = Σ0 is commpact. Then
there exists Σ2 ⊂ N3 homologous to Σ0 in N such that:

(1) distN(Σ,Σ0) ≤ 4π, and
(2) each connected component of Σ has diameter ≤ 2√

3
π.

The proof of Proposition 4.7 is an application of µ-bubbles.

Proof of Proposition 4.7. Consider a smooth domain N0 ⊂ N containing ∂N =
Σ0, such that writing ∂N0 = Σ0 t Σ1, we have that 4π − ε ≤ distN(Σ0,Σ1) ≤ 4π
(the extra room with ε is to guarantee that ∂N0 is smooth).

Let’s construct a function h ∈ C∞(N̊0) such that:

(1) h(p)→ +∞ as p→ Σ0, h(p)→ −∞ as p→ Σ1;
(2) 1 + 3

2
h2 − 2|∇h| ≥ 0.

The construction of such h is as follows. Take ρ a smoothing of distN(Σ0, ·) with
|Lip ρ| < 2, such that Σ0 = ρ−1(0), Σ1 = ρ−1(2π). This can be arranged by the
distance assumption between Σ0 and Σ1. Then define

h = − tan

(
ρ− π

2

)
.

It is simple to check that both conditions (1) and (2) above are satisfied. There-
fore, the functional

A(Ω) := |∂Ω| −
∫

Ω

h

has a smooth minimizer Ω, such that Ω = Σ− Σ0 with∫
Σ

|∇f |2 +
1

2
RΣf

2 ≥
∫

Σ

1

2
RN +

3

2
h2 + 2 〈∇h, ν〉 f 2 ≥ 0

for all f ∈ C∞(Σ). Using that RN ≥ 4 and (2), we conclude that

λ1(−∆ +KΣ) ≥ 1,
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and hence Theorem 3.4 concludes that each connected component has diameter
≤ 2√

3
π. �

To finish the proof, need to utilize another quantitative topological property
of the universal cover (M̃, g).

Lemma 4.8 (Uniform filling). Let (M, g) be a closed Riemannian manifold, and
Hk(M̃) = 0. Then there exists an increasing function Λ : R+ → R+ such that
any k-cycle X in M̃ with diamM̃(X) ≤ r can be written as X = ∂Y for some
(k + 1)-chain with diamM̃(Y ) ≤ Λ(r).

Proof of Lemma 4.8. Fix a point p ∈ M̃ . Translate X with some deck transfor-
mation so dM̃(p,X) ≤ D, where D = diam(M). Then X ⊂ BM̃(p,D + r).
Note that Hk(BM̃(p,D + r)) is finitely generated. Pick a set of generators
[X1], · · · , [XN ]. Write each Xj = ∂Yj and set Λ(r) = 2 maxj distM̃(p, Yj). Then
we may write X as the boundary of a (k + 1)-chain of diameter ≤ 2Λ(r). �

Now let’s choose L > 4π + Λ( 2√
3
π). Note that ∂Ω = Σ − Σ0. Since each

connected component of Σ has diameter ≤ 2√
3
π, we use Lemma 4.8 can write

Σ = ∂Ω1 for Ω ⊂ NΛ( 2√
3
π). Then Σ0 = ∂(Ω + Ω1), and we have that

distM̃(Ω + Ω1,Σ0) < 4π + Λ

(
2√
3
π

)
< L.

This implies that Σ0 and σ does not link, contradiction.
�

4.2. Urysohn width and macroscopic dimension. Gromov (see, e.g. [Gro86,
Gro17, Gro19]) proposed to study PSC manifolds via notions of macroscopic ge-
ometry. These notions measure the size of a Riemannian manifold. For example:

Definition 4.9. Let (M,d) be a metric space, k ∈ Z+. We say that the k-th
Urysohn width of (M,d) is bounded by Λ < ∞, if there exists a k-dimensional
simplicial complex P and a continuous map f : (M,d)→ P , such that

diam(f−1(p)) ≤ Λ, ∀p ∈ P.

Intuitively, a Riemannian manifold (Mn, g) has Urysohn k-width bounded
means that (Mn, g) is close to a k-dimensional space. We easily deduce from
the definition that if a metric space has Urysohn k-width ≤ Λ, then for every
k′ > k, its Urysohn k′-width is ≤ Λ.

Definition 4.10. Let (M,d) be a metric space. Its macroscopic dimension,
denoted by dimmc(M), is the smallest integer k such that the Uryshon k-width
of M is finite.

Gromov has made the following deep conjecture relating the Urysohn width
and positive scalar curvature.
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Conjecture 4.11 (Gromov [Gro17]). For each n ≥ 2, there exists a constant
c(n) such that any closed Riemannian manifold (Mn, g) with Rg ≥ 1 has Urysohn
(n− 2)-width ≤ c(n).

Recently, this conjecture was answered affirmatively by Liokumovich-Maximo
[LM23]. Slicing with µ-bubbles, we can also prove this for simply connected PSC
3-manifolds.

4.3. Extension to other curvature conditions. Recently, Brendle-Hirsch-
Johne [BHJ24] defined and investigated a series of curvature notions interpolating
between Ricci and scalar curvature. For a Riemannian manifold (Mn, g) and an
integer m ≤ n− 1, the m-intermediate curvature is defined for an unordered pair
of m orthonormal tangent vectors at a point p e1, · · · , em ∈ TpM :

Cm(e1, · · · , em) =
m∑
p=1

n∑
q=p+1

RM(ep, eq, eq, ep),

where {ej}nj=1 is an extension of e1, · · · , em to an orthonormal basis. We note
that C1 is the Ricci curvature, C2 is called the BiRicci curvature, and Cn−1 is
a equivalent to scalar curvature. In [BHJ24], an interesting dimension descent
property was discovered for the Cm curvature.

Theorem 4.12 (Brendle-Hirsch-Johne [BHJ24]). Assume 1 ≤ m ≤ n−1, n(m−
2) ≤ m2 − 2. Suppose (Nn, g) is closed and the m-intermediate curvature of g is
positive. Then N admits no weighted minimal slicing

Σn−m ⊂ · · · ⊂ Σn−1 ⊂ Nn.

In particular, this shows that for any X, Xn−m × Tm admits no metric with
positive m-intermediate curvature.

One may speculate more quantitative versions of Theorem 4.12. In particular,
there have been interesting developments in understanding the BiRicci curvature.

Theorem 4.13 ([CLMS24],[AX24]). Let n ≤ 5. There exists a constant c(n)
such that for all (Mn, g) a complete, simply connected Riemannian manifold with
BiRicci curvature ≥ 1, its Urysohn 1-width bounded by c(n).

Such bounds have surprising applications to other geometric problems, includ-
ing the recent advance in the stable Bernstein problem for minimal hypersurfaces
(see, e.g. [CLMS24]).
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