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Abtract
A simple solution to the classical Archimedes' cattle problem is given. Unlike the previous ones, this
is mainly based on elementary mathematics which, at least in principle, would have been available to
the mathematicians of the classical era. The solution applies linear transformation and infinite descent
in solving quadratic Diophantine equations in a manner which does not explicitly take advantage of
continued fractions. The idea is to create a sequence of transformed equations, until an equation is
obtained which can be solved easily. It turns out that this greatly simplifies the problem. The method
of solving the Diophantine equations is especially suitable for a computer. The result can be easily
used to produce several numerical solutions to the cattle problem.

Keywords: Diophantine equations, quadratic and bilinear equations, Archimedes' cattle
problem
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1 Introduction

The origin and the precise age of the famous Archimedes’ cattle problem is not
known for certainty, but it is generally believed to originate at least partly from
Archimedes himself. The task given in the problem is to calculate the number
of cattle of the Sun god Helios, starting from a few simple relations. An English
translation of the original wording is shown in Appendix A.

The difficulty of the cattle problem is reflected by the fact that the first accept-
able mathematical solution was given as late as 1880 by Amthor [1]. Amthor was
then able to show that the total number of cattle consists of 206545 digits and he
also calculated the first few of them. The complete calculation of the numerical
result could not be performed at that time. This was only possible after the advent
of computers and, for the first time, it was performed in 1965 by Williams, German
and Zarnke [2]. These authors, however, only describe their calculations, but do not
give the result in numbers. The smallest number of cattle was published in 1981
by Nelson [3], who also calculated several other solutions by means of a CRAY-1
supercomputer. Quite recently, Vardi [4] made a major step by presenting the first
general solution to the problem in closed form and calculating the two smallest
numerical results by means of a relatively slow workstation.

In this paper, a novel solution to the cattle problem is given. A key part of this
work is a method of solving quadratic Diophantine equations of the type Ax2 +
Bxy + Cy2 = 1, where AC < 0. The method does not directly rely on continued
fractions, it is both explicitly and implicitly strictly limited to integer calculus,
and it makes solving the equation into a routine-like procedure which is especially
suitable for a computer. It can probably be applied to equations of other types (e.g.
of higher orders) as well, but this has not yet been investigated.

The new solutions are expressed in terms of simple formulas by means of two
parameters, which can be divided into two groups. The values of the first type are
calculated by means of matrix multiplication, and the parameters of the second type
are obtained from those of the first type using only basic arithmetic operations.

The present work is independent of the paper by Vardi [4]. There is also a
fundamental difference between these two works: Vardi’s formalism carries the irra-
tional number

√
4729494 with it, whereas the present theory contains only integer

numbers. This is probably the reason why the expressions derived in this paper are
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more straightforward and give the numerical results more quickly when programmed
into a computer.



2 The first part of the problem

The first part of the cattle problem is simple. It gives the relations of bulls of each
colour, which can be written in terms of three equations

W =
(

1
2

+
1
3

)
B + Y

B =
(

1
4

+
1
5

)
D + Y (1)

D =
(

1
6

+
1
7

)
W + Y.

Here W, B, D and Y are the unknown numbers of white, black, dappled and yellow
bulls, respectively. Since the unknowns must be positive integers, the solution of
eq. (1) is

W = 2 · 3 · 7 · 53 ·Q
B = 2 · 32 · 89 ·Q

(2)
D = 22 · 5 · 79 ·Q
Y = 34 · 11 ·Q,

where Q is an arbitrary positive integer.
The corresponding equations for the cows of each colour are

w =
(

1
3

+
1
4

)
(B + b)

b =
(

1
4

+
1
5

)
(D + d)

(3)
d =

(
1
5

+
1
6

)
(Y + y)

y =
(

1
6

+
1
7

)
(W + w).
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Here, again, w, b, d and y refer to the numbers of white, black, dappled and yellow
cows. By solving the number of cows from these equations and using the results in
eq. (2), we obtain

w = 23 · 3 · 5 · 7 · 23 · 373 ·Q′

b = 2 · 32 · 17 · 15991 ·Q′
(4)

d = 22 · 3 · 5 · 7 · 11 · 761 ·Q′

y = 32 · 13 · 46489 ·Q′,

where Q′ = Q/4657. In order to make the numbers of the different cows into
integers, Q′ must be a positive integer as well. Now the common factor Q in eqs.
(2) can no longer be quite arbitrary, but necessarily Q = 4657Q′.



3 Diophantine equations for the second
part of the problem

The additional conditions in the second part of the problem state that the total
number of white and black bulls is a square number and that of the dappled and
yellow bulls is a triangular number. This can be written as

W + B = m2

(5)
D + Y =

1
2
n(n + 1),

where m and n are unknown integers. Here one can notice that W = B = D =
Y = w = b = d = y = 0 satisfy all the above conditions. This trivial solution is
not acceptable, however, since it is in contradiction with the problem, which states
that the herds of bulls are ’mighty in number’.

Using eq. (2), eq. (5) gives

W + B = 22 · 3 · 11 · 29 ·Q = m2

(6)
D + Y = 7 · 353 ·Q =

1
2
n(n + 1),

and because Q = 4657Q′,

W + B = 22 · 3 · 11 · 29 · 4657 ·Q′ = m2

(7)
D + Y = 7 · 353 · 4657 ·Q′ = 1

2
n(n + 1).

In principle, it would now be possible to solve eqs. (7) for Q′. Then the final
solutions would be obtained by inserting each root Q′ in eq. (4) and Q = 4657Q′ in
eq. (2). This leads to considerable difficulties, however, because even the smallest
root is a very large number. It is easier to obtain the sequence of roots Q by solving
eqs. (6), since this sequence starts from an essentially smaller number. For the final
solution, one then only accepts those roots Q which are divisible by 4657.

The first equation in (6) indicates that

Q = 3 · 11 · 29 · m̃2, (8)
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where m̃ is a new unknown positive integer. Then

m = 2 · 3 · 11 · 29 · m̃ (9)

and, inserting Q in the second equation in (6), we obtain

n(n + 1) = 2 · 3 · 7 · 11 · 29 · 353 · m̃2. (10)

It is now easily seen that

n = pu2

(11)
n + 1 = qv2,

where u, v, p and q are also positive integers and

uv = m̃
(12)

pq = 2 · 3 · 7 · 11 · 29 · 353.

Hence the Diophantine equation we have to solve is of the form

pu2 + 1 = qv2. (13)

This equation must be investigated using separately all values of p and q which
satisfy the condition in eq. (12). For each pair of roots u and v, the corresponding
value of Q can then be calculated using eqs. (12) and (8).

This solution method differs from that by Amthor [1] or Vardi [4], who derived
a single equation of the form Ax2 + 1 = y2, known as Pell’s equation. The reasons
for this procedure will be explained later in the Discussion section.

When all possible values of p and q are taken into account, the present approach
leads to 64 equations altogether. Nevertheless, the situation is not so complicated
as it might look at first sight since, by means of a simple procedure, one can quickly
show that 60 of them do not have solutions.

The method of rejecting most of the equations in (13) is as follows. We forget
for a while the condition for pq in eq. (12). Let p0 be one of the prime numbers
2, 3, 7, 11, 29 or 353. If p is divisible by p0, the existence of a solution implies
the existence of v ∈ N such that qv2 − 1 is divisible by p0. Then, neither q nor
v is divisible by p0, so that their remainders rem[q] and rem[v] may have values
1, 2, . . . , p0− 1. Thus, qv2− 1 cannot be divisible by p0, unless rem[q] · (rem[v])2− 1
is divisible by p0, at least with a single pair of the possible values of rem[q] and
rem[v]. Correspondingly, if q is divisible by p0, there must exist u ∈ N such that
pu2 + 1 is divisible by p0, and the remainders rem[p] and rem[u] must satisfy the
condition that rem[p] · (rem[u])2 +1 is divisible by p0. If, therefore, these conditions
are broken for some pair p and q with any value of p0, the corresponding eq. (13)
does not have solutions.

The amount of the work necessary in calculating the possible remainders of p
and q can be diminished with the following reasoning. Let t be a primitive root of
p0 and put p0 = 2k + 1 (we can omit the trivial case p0 = 2). If s is a positive
integer, then the Fermat little theorem shows that ts ≡ 1(p0)⇔ s = 2kr, where r
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is a positive integer. Next, let q ≡ ts1(p0) and v ≡ ts2(p0). Now qv2 − 1 is divisible
by p0, if and only if s1 + 2s2 = 2kr, which means that s1 must be even.

The case where pu2 + 1 is divisible by p0 is similar. Let p ≡ ts1(p0) and
u ≡ ts2(p0). Because tk ≡ −1(p0) the necessary and sufficient condition for the
divisibility of pu2 + 1 by p0 is s1 + 2s2 = k + 2kr. This means that s1 must be even
if k is even, and s1 must be odd, if k is odd.

In summary, the possible non-zero remainders of q are the remainders of t2s
′
1 ,

where 0 < s′1 ≤ k. The non-zero remainders of p are the same as for q if k is
even. This means that p0 has the form 4h + 1, where h is a non-negative integer.
If p0 = 4h + 3, the possible non-zero remainders of p are those among the numbers
1, 2, . . . , p0 − 1 which are not remainders of q.

For each value of p0, it is now easy to check which values of the remainders
rem[p] and rem[q] do not break the above conditions. These are shown in Table 1
for p0 = 2, 3, 7, 11 and 29. Then, because eq. (12) implies that either p or q must
be divisible by p0, one can test all possible pairs p and q to see which of them give
the allowed remainders for each value of p0. If a calculated remainder does not
appear on the appropriate row in the table, eq. (13) does not have solutions with
these values of p and q. The checking is not tedious, since nearly one half of the
equations will already be rejected by the test p0 = 3.

In this manner, one can find out that, out of the original 64 equations, only the
following four are left for further study:

2 · 11 · 353 · u2 + 1 = 3 · 7 · 29 · v2 (14)
11 · 29 · 353 · u2 + 1 = 2 · 3 · 7 · v2 (15)

3 · 7 · 11 · 353 · u2 + 1 = 2 · 29 · v2 (16)
2 · 3 · 7 · 11 · 29 · 353 · u2 + 1 = v2. (17)

The last one is the same as Pell’s equation, which was solved in the previous solutions
of the cattle problem.

When p0 = 353, the above testing procedure is too laborious. A corresponding
check for p0 = 353 can also be done by means of the reasoning presented in Appendix
B. However, this does not lead to any more rejections and therefore eqs. (14)–(17)
remain for solving. A similar reasoning would have been possible for the other
values of p0 as well, but testing the remainders is quicker. One should finally notice
that the above arguments do not prove that those equations we have left would
necessarily have solutions.

Table 1. Allowed remainders of p and q when divided by p0.

p0 Remainders of p Remainders of q

2 0, 1 0, 1
3 0, 2 0, 1
7 0, 3, 5, 6 0, 1, 2, 4
11 0, 2, 6, 7, 8, 10 0, 1, 3, 4, 5, 9
29 0, 1, 4, 5, 6, 7, 9, 13, 0, 1, 4, 5, 6, 7, 9, 13,

16, 20, 22, 23, 24, 25, 28 16, 20, 22, 23, 24, 25, 28



4 The smallest solutions of the Diophantine
equations

The main difficulty in the cattle problem is in finding the solutions of the Dio-
phantine equations. Previously this has been carried out by means of continued
fractions. In this work, a different formalism is introduced which does not explicitly
use continued fractions, although the two methods seem to have a close relationship.

Let us investigate the equation

A1x
2
2 + B1x1x2 + C1x

2
1 − 1 = 0, (18)

where A1, B1 and C1 are integers and x1 and x2 are unknowns. Our purpose is
not to develop a method of solving Diophantine equations of the form (18) in a
general case. Rather, the problem is considered as an individual exercise so that
all possibilities are not considered which may be encountered in analysing eq. (18).
We restrict ourselves to a case where A1C1 < 0 and (B2

1 − 4A1C1)1/2 /∈ Z. In
addition, we consider the roots x1 and x2 to be positive integers and x2 ≤ x1. When
A1C1 < 0, one can easily see from eq. (18) which one of the unknowns is greater,
and therefore the latter condition is not a limitation but only a choice in notation.

The basic idea is to replace the greater unknown by a new smaller non-negative
unknown in such a manner that the form of the equation remains the same and
the above restrictions are preserved. Then the procedure can be repeated until the
roots of the transformed equation are so small that they are directly seen.

When x1 is replaced by
x1 = h1x2 + x3, (19)

where h1 is an arbitrary integer and x3 a new unknown, eq. (18) will be transformed
as

A2x
2
3 + B2x2x3 + C2x

2
2 − 1 = 0. (20)

The coefficients in eq. (20) are given by

A2(h1) = C1

B2(h1) = B1 + 2h1C1 (21)
C2(h1) = A1 + h1B1 + h2

1C1.
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Hence, we have shown that the form of eq. (18) remains the same in transformation
(19). It is also easy to show by direct calculation that B2

2−4A2C2 = B2
1−4A1C1, so

that this expression of coefficients remains invariant in transformation (19). Since
(B2

1 − 4A1C1)1/2 /∈ Z, C2(h1) �= 0 for any integer h1.
Because the roots are non-negative, the value of h1 can be chosen in such a

way that 0 ≤ x3 ≤ x2 (the reason for having the two equalities in this relation
will be explained later). The value of h1 satisfying this condition is obtained in the
following manner.

Eq. (18) has a solution x2 = 0 only when C1 = 1. Then x1 = 1. When x2 > 0,
there is such a real number k1 ≥ 1 that x1 = k1x2. By inserting x1 in eq. (18) we
obtain

C2(k1) = A1 + k1B1 + k2
1C1 =

1
x2

2

≤ 1. (22)

Next, we consider two different cases. In the first one, A1 ≥ 1 and C1 ≤ −1.
Because C2(k) is a polynomial of second degree and C2(0) = A1 ≥ 1, it is easy to
see that C2(k) > C2(k1) > 0, when 0 < k < k1 and C2(k) < C2(k1) when k > k1.
In the case x2 < x1, we have k1 > 1. Then, for each natural number h1 < k1,
C2(h1) > 0 and, since C2(h1) is an integer, necessarily C2(h1) ≥ 1. In the case
k1 = 1, obviously C2(k1) is an integer, so that x2 = x1 = 1 and C2(k1) = 1. Hence,
there is in any case a natural number k2 such that C2(k2) ≥ 1.

We choose h1 to be the largest natural number for which C2(h1) ≥ 1. Because
C2(h1 + 1) �= 0, necessarily C2(h1 + 1) ≤ −1. This means that h1 ≤ k1 < h1 + 1⇒
h1x2 ≤ k1x2 = x1 = h1x2 +x3 < h1x2 +x2, which gives 0 ≤ x3 < x2. Hence, it has
been possible to choose h1 in the desired way.

In the second case, A1 ≤ −1 and C1 ≥ 1. Then C2(k) < C2(k1) ≤ 1 when
0 < k < k1, and C2(k) > C2(k1) when k > k1. In the case x2 < x1, we have k1 > 1.
Then, since C2(h1) is a non-zero integer for each natural number h1, necessarily
C2(h1) < 0 when h1 < k1. If x1 = x2, then k1 = 1⇒ C2(1) = 1⇒ x2 = x1 = 1. In
addition, C2(0) = A1 < 0. Hence, there is such an integer k2 ≥ 0 that C2(k2) < 0.

Let h1 be the greatest integer, for which C2(h1) < 0 ⇒ C2(h1 + 1) ≥ 1. Now
h1 < k1 ≤ h1 + 1 ⇒ h1x2 < k1x2 = x1 = h1x2 + x3 ≤ h1x2 + x2 ⇒ 0 < x3 ≤ x2.
Therefore this h1 is such a number that 0 < x3 ≤ x2.

When h1 is chosen in the way described above, one can show that eq. (20)
fulfills similar basic assumptions as those (i.e. 0 ≤ x2 ≤ x1 and A1C1 < 0) made
in eq. (18). It was shown above that x2 and x3 are non-negative and x3 ≤ x2.
Because A2 = C1, A1 and A2 have different signs. It was also shown above that the
assumption C1 ≤ −1 led to C2(h1) ≥ 1 and the assumption C1 ≥ 1 to C2(h1) < 0.
Hence also C1 and C2 have different signs so that the signs of A2 and C2 must be
opposite. The original assumptions are therefore also valid for eq. (20).

The above criterion of choosing h1 can be expressed in a very brief and clear
form: h1 is the greatest integer which changes the sign of C, i.e. the signs of C2(h1)
and C1 are opposite. The restriction 0 ≤ x3 ≤ x2 in transformation (19) was made
in order to obtain such a clear criterion. In the case A1 ≤ −1, C1 ≥ 1 the criterion
led to the relation 0 < x3 ≤ x2, so that x3 = x2 is also possible.

Since the form of the equation, as well as the assumptions on the relative signs
of the coefficients have been preserved in the transformation from eq. (18) to eq.
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(20), the transformation can be repeated to eq. (20) in a similar way. Therefore the
transformation can be repeated infinitely. The choice of h1 can always be made, also
in the case when the equation has no solutions. If solutions exist, the calculation
must, after a finite number of transformations, lead to a situation where xi = 1
and xi+1 = 0. These numbers are the roots of the equation Aix

2
i+1 + Bixixi+1 +

Cix
2
i − 1 = 0 if and only if Ci = 1. Because in all calculated transformations

xj = hjxj+1 +xj+2, j = i−1, . . . , 1, the values of the coefficients hj are known, this
sequence allows a simple calculation of the values of the unknowns x1 and x2. If the
equation has no solutions, none of the transformations leads to the value Ci = 1.
Namely, if this would happen, one could calculate the solution according to the lines
explained above.

Next, we carry out the above process on eqs. (14)–(17). The values of the
coefficients Ai, Bi, Ci and hi for eqs. (14) and (15) are written in Tables 2 and 3,
respectively. In the table captions, the equations are rewritten in the form where
x1 > x2 as in the above theory.

The calculations indicate that the algorithm makes a loop so that, after a certain
number of operations, the same numbers will reappear. However, the loop does not
close at the starting equation but at its first transformation. The length of the loop
is the same in both cases, it is observed that A94 = A2, B94 = B2 and C94 = C2.

A second feature in the algorithm is that, after 47 transformations, the same
numbers appear in the return part of the loop in such a way that A and C have
exchanged their values and also the sign of B is changed. In order to show this
more clearly, the loops are presented in two sets of columns; the right hand columns
contain the return part.

When the same calculations are made in eqs. (16) and (17), it is noticed that
their loops are the same as those in Tables 3 and 2, respectively. The difference is
that these equations enter the loops at their turning points. Therefore the values
of A1, B1, C1 and h1 of these equations are written below the right hand columns.
The algorithm starting from these values continues up the right hand columns and
back down the left hand columns.

Inside the loops, one can find two values of i, 47 and 93, such that Bi is divisible
by Ci. Then, based on eqs. (21), one can choose such an h̃i that B̃i+1 = 0. If this
choice is made at i = 93, the original equation will be restored both in Table 2 and
Table 3. If the same procedure is made at i = 47, the loop of eq. (14) will give
Pell’s equation (17) and, correspondingly, the loop of eq. (15) will give eq. (16).
All this suggests that Diophantine equations of the form (13) are joined together
in pairs. Therefore the equations may have deep connections which would not be
visible without this algorithm, but the connection is not investigated any further
here.

Because the length of both loops is 92 steps, this suggests that the length only
depends on the product of p and q, although this has not been studied.

It is seen that, in Table 2, Ci = 1 at i = 47 but, in Table 3, Ci is never unity.
This means that eqs. (14) and (17) have solutions, but eqs. (15) and (16) have no
solutions at all.

It is now a simple matter to calculate the smallest positive roots of eq. (14). Since
the numerical values of the coefficients hi are known, x1 and x2 can be calculated
recursively using the transformation xi = hixi+1 +xi+2, starting from xi+1 = x47 =
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1, xi+2 = x48 = 0 and hi = h46 = 1. The result is that the smallest positive roots
of eq. (14) are

v = r1 = 300426607914281713365
(23)

u = r2 = 84129507677858393258.

The smallest non-negative solutions of eq. (17) are readily seen and they are

v = 1
(24)

u = 0.
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Table 2. Eq. (14): −7766x2
2 + 609x2

1 − 1 = 0.

i Ai Bi Ci hi i Ai Bi Ci hi
1 -7766 0 609 3
2 609 3654 -2285 1 ⇐= 93 -2285 -3654 609 6
3 -2285 -916 1978 1 92 1978 916 -2285 1
4 1978 3040 -1223 3 91 -1223 -3040 1978 1
5 -1223 -4298 91 47 90 91 4298 -1223 3
6 91 4256 -2210 1 89 -2210 -4256 91 47
7 -2210 -164 2137 1 88 2137 164 -2210 1
8 2137 4110 -237 17 87 -237 -4110 2137 1
9 -237 -3948 3514 1 86 3514 3948 -237 17

10 3514 3080 -671 5 85 -671 -3080 3514 1
11 -671 -3630 2139 1 84 2139 3630 -671 5
12 2139 648 -2162 1 83 -2162 -648 2139 1
13 -2162 -3676 625 6 82 625 3676 -2162 1
14 625 3824 -1718 2 81 -1718 -3824 625 6
15 -1718 -3048 1401 2 80 1401 3048 -1718 2
16 1401 2556 -2210 1 79 -2210 -2556 1401 2
17 -2210 -1864 1747 1 78 1747 1864 -2210 1
18 1747 1630 -2327 1 77 -2327 -1630 1747 1
19 -2327 -3024 1050 3 76 1050 3024 -2327 1
20 1050 3276 -1949 1 75 -1949 -3276 1050 3
21 -1949 -622 2377 1 74 2377 622 -1949 1
22 2377 4132 -194 21 73 -194 -4132 2377 1
23 -194 -4016 3595 1 72 3595 4016 -194 21
24 3595 3174 -615 6 71 -615 -3174 3595 1
25 -615 -4206 499 8 70 499 4206 -615 6
26 499 3778 -2327 1 69 -2327 -3778 499 8
27 -2327 -876 1950 1 68 1950 876 -2327 1
28 1950 3024 -1253 2 67 -1253 -3024 1950 1
29 -1253 -1988 2986 1 66 2986 1988 -1253 2
30 2986 3984 -255 16 65 -255 -3984 2986 1
31 -255 -4176 1450 2 64 1450 4176 -255 16
32 1450 1624 -2807 1 63 -2807 -1624 1450 2
33 -2807 -3990 267 15 62 267 3990 -2807 1
34 267 4020 -2582 1 61 -2582 -4020 267 15
35 -2582 -1144 1705 1 60 1705 1144 -2582 1
36 1705 2266 -2021 1 59 -2021 -2266 1705 1
37 -2021 -1776 1950 1 58 1950 1776 -2021 1
38 1950 2124 -1847 1 57 -1847 -2124 1950 1
39 -1847 -1570 2227 1 56 2227 1570 -1847 1
40 2227 2884 -1190 3 55 -1190 -2884 2227 1
41 -1190 -4256 169 25 54 169 4256 -1190 3
42 169 4194 -1965 2 53 -1965 -4194 169 25
43 -1965 -3666 697 5 52 697 3666 -1965 2
44 697 3304 -2870 1 51 -2870 -3304 697 5
45 -2870 -2436 1131 2 50 1131 2436 -2870 1
46 1131 2088 -3218 1 49 -3218 -2088 1131 2
47 -3218 -4348 1 4348 =⇒ 48 1 4348 -3218 1

-4729494 0 1 2174
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Table 3. Eq. (15): −112607x2
2 + 42x2

1 − 1 = 0.

i Ai Bi Ci hi i Ai Bi Ci hi
1 -112607 0 42 51
2 42 4284 -3365 1 ⇐= 93 -3365 -4284 42 102
3 -3365 -2446 961 3 92 961 2446 -3365 1
4 961 3320 -2054 1 91 -2054 -3320 961 3
5 -2054 -788 2227 1 90 2227 788 -2054 1
6 2227 3666 -615 6 89 -615 -3666 2227 1
7 -615 -3714 2083 1 88 2083 3714 -615 6
8 2083 452 -2246 1 87 -2246 -452 2083 1
9 -2246 -4040 289 14 86 289 4040 -2246 1

10 289 4052 -2162 1 85 -2162 -4052 289 14
11 -2162 -272 2179 1 84 2179 272 -2162 1
12 2179 4086 -255 16 83 -255 -4086 2179 1
13 -255 -4074 2275 1 82 2275 4074 -255 16
14 2275 476 -2054 1 81 -2054 -476 2275 1
15 -2054 -3632 697 5 80 697 3632 -2054 1
16 697 3338 -2789 1 79 -2789 -3338 697 5
17 -2789 -2240 1246 2 78 1246 2240 -2789 1
18 1246 2744 -2285 1 77 -2285 -2744 1246 2
19 -2285 -1826 1705 1 76 1705 1826 -2285 1
20 1705 1584 -2406 1 75 -2406 -1584 1705 1
21 -2406 -3228 883 4 74 883 3228 -2406 1
22 883 3836 -1190 3 73 -1190 -3836 883 4
23 -1190 -3304 1681 2 72 1681 3304 -1190 3
24 1681 3420 -1074 3 71 -1074 -3420 1681 2
25 -1074 -3024 2275 1 70 2275 3024 -1074 3
26 2275 1526 -1823 1 69 -1823 -1526 2275 1
27 -1823 -2120 1978 1 68 1978 2120 -1823 1
28 1978 1836 -1965 1 67 -1965 -1836 1978 1
29 -1965 -2094 1849 1 66 1849 2094 -1965 1
30 1849 1604 -2210 1 65 -2210 -1604 1849 1
31 -2210 -2816 1243 2 63 1243 2816 -2210 1
32 1243 2156 -2870 1 63 -2870 -2156 1243 2
33 -2870 -3584 529 7 62 529 3584 -2870 1
34 529 3822 -2037 2 61 -2037 -3822 529 7
35 -2037 -4326 25 173 60 25 4326 -2037 2
36 25 4324 -2210 1 59 -2210 -4324 25 173
37 -2210 -96 2139 1 58 2139 96 -2210 1
38 2139 4182 -167 25 57 -167 -4182 2139 1
39 -167 -4168 2314 1 56 2314 4168 -167 25
40 2314 460 -2021 1 55 -2021 -460 2314 1
41 -2021 -3582 753 5 54 753 3582 -2021 1
42 753 3948 -1106 3 53 -1106 -3948 753 5
43 -1106 -2688 2643 1 52 2643 2688 -1106 3
44 2643 2598 -1151 3 51 -1151 -2598 2643 1
45 -1151 -4308 78 55 50 78 4308 -1151 3
46 78 4272 -2141 2 49 -2141 -4272 78 55
47 -2141 -4292 58 74 =⇒ 48 58 4292 -2141 2

-81543 0 58 37



5 The general solutions of the Diophantine
equations

In the previous section, the smallest non-negative solutions of eqs. (14) and (17)
were derived. Once these are known, it is a fairly simple task to calculate all the
other roots. We first investigate eq. (14).

Let us assume that x1 and x2 are roots of eq. (14), different from the roots r1 and
r2 in eq. (23). Therefore, when the algorithm in Table 2 is carried out, necessarily
at i = 47, where Ci = 1, xi �= 1 and xi+1 �= 0. Since Ci �= 1 within the range
48 ≤ i ≤ 93, also xi+1 > 0 within this range. If we next choose a transformation
coefficient h̃93 = 3 instead of h93 = 6, eqs. (21) will lead to a transformed equation

−7766x̃2
94 + 609x̃2

95 − 1 = 0, (25)

where x̃94 = x94 and x93 = 3x̃94 + x̃95. Also, x̃94 > 0 and x̃95 > 0.
Since the transformation in eq. (19) is linear at each step of the cycle, the linear

relations

x1 = a1x̃95 + a2x̃94 (26)
x2 = a3x̃95 + a4x̃94

must be valid. When the numeric values of the transformation coefficients hi, i =
1, . . . , 92 and h̃93 are known, the coefficients ai, i = 1, . . . 4 can be easily calculated.
The results are

a1 = 109931986732829734979866232821433543901088049
a2 = 392567302329690546856394748066206816187916440

(27)
a3 = 30784636507697855142356992218944109072681060
a4 = a1.

By inserting eqs. (27) and (26) in eq. (14), it is observed that x1 and x2 are
roots of eq. (14), if and only if v = x̃95 and u = x̃94 are roots of eq. (14). Then the
roots (x1, x2) can be expressed in terms of smaller roots (x̃95, x̃94)(

x1

x2

)
= L

(
x̃95

x̃94

)
, (28)
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where the matrix L is

L =
(

a1 a2

a3 a1

)
. (29)

The above reasoning can be repeated for the roots (x̃95, x̃94). This will give a
new pair of smaller roots. The algorithm can be continued in the similar way, until
it leads to such roots (r̃1, r̃2) that the algorithm in the next loop gives x47 = 1,
x48 = 0. By calculating backwards from these values one can obtain (r̃1, r̃2) and,
since the calculation is the same as in calculating the smallest roots in Section 4,
also (r̃1, r̃2) = (r1, r2). This indicates that the above reasoning, started from any
pair of roots, necessarily leads to the same pair of smallest roots. Therefore all
roots of eq. (14) can be derived from the smallest roots and the nth pair of roots
(r2n−1, r2n) is given by

(
r2n−1

r2n

)
= Ln−1

(
r1

r2

)
. (30)

When n = 1, L0 is a unit matrix. Hence all positive roots of eq. (14) are given by
eq. (30), where r1 and r2 are the numbers in eq. (23).

Next we investigate eq. (17) which is of the form pqu2 + 1 = v2, where p = 7766
and q = 609. Then pqu2 = (v − 1)(v + 1). We only consider non-trivial solutions
u �= 0, v �= 1. Because pq is divisible by 2, but not by 4, v must be odd and u must
be even so that

v = 2v′ + 1
(31)

u = 2u′,

where v′ and u′ are unknown integers. Then, obviously

pqu′2 = v′(v′ + 1). (32)

Since eq. (32) is similar to eq. (10), the analysis in Section 3 applies here also.
This means that there are only two alternatives, corresponding to eqs. (14) and
(17), respectively:

1. In the first case v′ = pu2
0 and v′ + 1 = qv2

0 . This leads to eq. (14) so that also
u = u0 and v = v0 are roots of eq. (14). By inserting v′ and v′+1 in eq. (32),
we obtain u′ = u0v0. Then eq. (17) has a solution v = 2pu2

0 + 1 = 2qv2
0 − 1,

u = 2u0v0, where u0 and v0 are arbitrary roots of eq. (14).

2. In the second case v′ = pqu2
1, v
′+1 = v2

1 , which leads back to eq. (17). Hence
v = v1, u = u1 are roots of eq. (17). Also in this case, eq. (32) gives u′ = u1v1.
This means that eq. (17) has a solution v = 2pqu2

1 + 1 = 2v2
1 − 1, u = 2u1v1,

where u1 and v1 are smaller roots of eq. (17).

Because, in the second case, u1 and v1 are not the trivial solution 0 and 1, the
above reasoning can be repeated. This leads to smaller numbers u2 and v2, which
are roots of either eq. (14) or eq. (17). If u2 and v2 are roots of eq. (17), the same
process can be repeated again. There are necessarily a finite number of steps in this
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process, because it gives two number sequences which are bounded from below.
Therefore the sequence must finally end in such a solution of eq. (17) that the
following pair is a solution of eq. (14).

In conclusion, all positive solutions of eq. (17) are obtained in the following
manner. Starting from an arbitrary solution v0, u0 of eq. (14), one can first make
use of item 1 and calculate

v1 = 2 · 609v2
0 − 1

(33)
u1 = 2u0v0,

which are roots of eq. (17). Then item 2 indicates that a sequence of other roots of
eq. (17) is obtained recursively from the equations

vn = 2v2
n−1 − 1

(34)
un = 2un−1vn−1,

where n = 2, 3, . . .. By a direct substitution, one can easily see that all pairs vi
and ui are indeed roots of eq. (17). The smallest non-trivial solution of eq. (17) is
obtained from eq. (33) using v0 = r1 and u0 = r2.

The above discussion means that every pair of roots of eq. (17) can be calculated
by means of eqs. (33) and (34) starting from some pair of roots of eq. (14). Hence
the solutions of eqs. (14) and (17) make a two-dimensional system in the following
way. The solutions of eq. (14) make a sequence as indicated by eq. (30), and a
sequence of solutions of eq. (17) emerges from every element in this sequence. One
should also notice that applying eqs. (34) to the trivial solution u = 0, v = 1, gives
the same trivial solution.

Although this method gives all positive roots of eqs. (14) and (17), it does
not reveal all relations between the roots. These relations become clearer in the
following analysis.

When moving from one equation to another along the algorithmic chain, a linear
transformation

xi = b1xj+1 + b2xj (35)
xi+1 = b3xj+1 + b4xj

will be formed, where the coefficients b1, b2, b3 and b4 are non-negative. Inserting
the expressions of xi and xi+1 in Aix

2
i+1+Bixixi+1+Cix

2
i gives Ajx2

j+1+Bjxjxj+1+
Cjx

2
j , so that the quadratic form remains in transformation (35). One should notice

that the transformation can also be applied if one or both of the equations is (14)
or (17).

Let bi, i = 1, · · · , 4 be the coefficients by which we move from p′x2 + 1 = q′y2

to p′x̃2 + 1 = q′ỹ2. This means going around one or more full loops starting either
from eq. (14) or from eq. (17). Hence

y = b1ỹ + b2x̃ (36)
x = b3ỹ + b4x̃.
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The expression q′y2 − p′x2 remains invariant in this transformation and the coeffi-
cients b1, b2, b3 and b4 are all non-zero. Therefore, if ỹ = 1 and x̃ = 0, q′b21−p′b23 = q′.
If ỹ = 0 and x̃ = 1, q′b22−p′b24 = −p′. If x̃ = ỹ = 1, q′(b1+b2)2−p′(b3+b4)2 = q′−p′.

It is easy to see that q′b1b2 = p′b3b4. On the other hand, q′2b22 − p′2b23 =
q′2b21b

2
2 − p′2b23b

2
4 = 0 ⇒ q′b2 = p′b3. Hence b1 = b4. This gives q′ = q′b21 − p′b23 =

q′b21 − q′b2b3 ⇒ b21 − b2b3 = 1. Because the coefficients b2 and b3 are of the form
b2 = p′b′ and b3 = q′b′ ⇒ b21 − p′q′b′2 = 1, where b′ is the greatest common divisor
of b2 and b3. Hence we have shown that the coefficients of the transformation are
of the form b1, b2 = p′b′, b3 = q′b′ and b4 = b1, where v = b1, u = b′ are roots of
equation v2 − p′q′u2 = 1.

If, conversely, we assume that, in eqs. (36), b1 = b4, b2 = p′b′ and b3 = q′b′,
where b1 and b′ satisfy the conditions p′q′b′2 + 1 = b21 and p′x̃2 + 1 = q′ỹ2, an easy
calculation shows that p′x2 +1 = q′y2. Therefore two arbitrary pairs of roots (r, r′)
and (r̃, r̃′) of equation p′x2 + 1 = q′y2 have a relation

(
r̃
r̃′

)
=

(
b1 p′b′

q′b′ b1

) (
r
r′

)
, (37)

where b1 and b′ are certain roots of eq. (17).
In the case of eq. (14), q′ = q = 609 and p′ = p = 7766. By applying eq. (37)

one can then see that the nth pair of roots of eq. (14) is given by
(

r2n−1

r2n

)
=

(
b1 pb′

qb′ b1

) (
r1

r2

)
= L̃n−1

(
r1

r2

)
. (38)

Since the linear transformation L is equivalent to a single loop (back to the original
equation) in the transformation sequence, expression q′y2−p′x2 remains invariant in
this transformation. Hence the expression also remains invariant in the transforma-
tion Ln−1. It was shown above that q′y2−p′x2 remains invariant in the transforma-
tion L̃n−1 and therefore, according to eq. (30), L̃n−1 = Ln−1. The elements of ma-
trix L can be calculated using eq. (33) in the following way: a1 = a4 = 2 ·609r2

1−1,
a2 = 7766 · 2r1r2 and a3 = 609 · 2r1r2.

In the case of eq. (17), q′ = 1 and p′ = pq = 7766 · 609. In the same way as
above, the relation of the roots (r2n−1, r2n) and the smallest non-negative solution
(1, 0) is

(
r2n−1

r2n

)
=

(
b1 pqb′

b′ b1

) (
1
0

)
=

(
b̃1 pqb̃′

b̃′ b̃1

)n (
1
0

)
. (39)

Here b̃1 and b̃′ are the smallest positive roots of eq. (17).



6 Choosing the solutions of the Diophantine
equations

The solution of the cattle problem implies the choice of such roots of the Diophantine
equations that Q in eqs. (2) will be divisible by 4657. Eqs. (8) and (12) indicate that
this condition is fulfilled if and only if one of the roots of eq. (14) or (17) is divisible
by 4657. Since, in the continuation, we only investigate divisibility by a single prime
number t0 = 4657, we adopt a convention that remainders and congruences always
refer to t0. Also, the remainder of u and the matrix composed of the remainders of
the elements of L̃n are denoted by rem[u] and rem[L̃n], respectively.

We first investigate eq. (14). All its solutions are obtained from eq. (30), where
matrix Ln−1 is the same as matrix L̃n−1 in eq. (38). From eq. (38) we see that
the pairs of roots (r2n1−1, r2n1) and (r2n2−1, r2n2) of eq. (14) satisfy the condition
r2n1−1 ≡ r2n2−1 and r2n1 ≡ r2n2 , when the remainders rem[L̃n1−1] and rem[L̃n2−1]
are the same.

Next we investigate how many different remainder matrices rem[L̃n−1] exist.
The remainders of the elements of L̃n−1 depend only on b1 and b′ which are also
roots of eq. (17). First we find out how many different remainders rem[v] and rem[u]
exist which satisfy the condition

609 · 7766(rem[u])2 + 1 ≡ (rem[v])2. (40)

The factor 609 · 7766 in congruence (40) can of course be replaced by its remainder
t1 = 2639. According to the Fermat little theorem, t46561 ≡ 1 and, because 4656 =
16 ·3 ·97, it is easy to show that t1 is a primitive root of 4657. Hence, each non-zero
remainder is congruent with ts1, where s is a positive integer.

Let now rem[u] be an arbitrary remainder and s1 such a number that 1 ≤ s1 ≤
4656 and ts11 ≡ rem[u]. The problem is whether such a remainder rem[v] exists that
t1(rem[u])2 + 1 ≡ (rem[v])2. We first assume that rem[v] exists.

Let rem[v] ≡ ts21 , where 1 ≤ s2 ≤ 4656. This gives

t2s1+1
1 + 1 ≡ t2s21 ≡ t3·4656+2s2

1 . (41)
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Here 3 ·4656 was added to the exponent to make sure that it is greater than 2s1 +1.
For the same reason we put 1 ≡ t3·46561 . Thus congruence (41) gives

t
3·4656−(2s1+1)
1 + 1 ≡ t

3·4656+2s2−(2s1+1)
1 . (42)

The exponent on the right hand side is odd and the exponent on the left hand side
is of the form 1 + 2[3 · 2328 − (s1 + 1)], so that we have found such a remainder
rem[u′] ≡ t

3·2328−(s1+1)
1 that congruence (40) does not have a solution rem[v].

On the other hand, if rem[u] is such a remainder that congruence (40) does not
have a solution rem[v], there is such an s2 within the range 0 ≤ s2 ≤ 2327 that

t2s1+1
1 + 1 ≡ t2s2+1

1 . (43)

In the same way as above,

t1t
2[3·2328−(s1+1)]
1 + 1 ≡ t3·4656+2s2−2s1

1 . (44)

Because the exponent on the right hand side is even, we have found remainders
rem[u′] and rem[v′] which satisfy congruence (40).

If s1 is replaced by s′1 = 3 · 2328 − (s1 + 1) in eq. (44), it will be noticed that
3 · 2328 − (s′1 + 1) = s1. Then the remainders rem[u] ≡ ts11 and rem[u′] ≡ t

s′1
1 are

joined together in pairs. In addition, we notice that no value of rem[u] can make
rem[v] zero, because in such a case we would have t1(rem[u])2 ≡ −1 ≡ t23281 . This
congruence cannot be valid since the exponent on one side is even and on the other
side odd.

It was shown above that the remainders of u can be arranged in pairs in such
a way that one remainder in each pair has a rem[v] which satisfies congruence (40)
and the other remainder does not. Because the number of these pairs is (t0 − 1)/2
and because there are two values of rem[v] �= 0 for each rem[u] satisfying congruence
(40), we have found t0−1 pairs of remainders (rem[u], rem[v]) satisfying congruence
(40). In addition, the pairs (rem[u], rem[v]) = (0, 1) and (rem[u], rem[v]) = (0, 4656)
satisfy (40), so that the total number of pairs is t0 + 1.

Hence we have shown that there are at most t0 + 1 different remainder ma-
trices for the matrices L̃n−1 in eq. (38). It is easily calculated that rem[L̃4658] =
rem[L4658] = I (a unit matrix). If n′ is the smallest positive integer which makes
rem[Ln

′
] into a unit matrix, then 4658 is divisible by n′. Because 4658 = 2 ·17 ·137,

it can be easily shown that n′ = 4658. Similarly, one can show that the smallest pos-
itive integer n′′ which makes rem[Ln

′′
] = −I is equal to 2329. In these calculations

one can make use of the fact that Ln1Ln2 = Ln1+n2 and (Ln1)n2 = Ln1n2 .
Let

L̃ =
(

b1 pb′

qb′ b1

)

be a coefficient matrix in eq. (37), such that the remainders of the roots (r, r′) and
(r̃, r̃′) of eq. (14) are the same. Hence b1r + pb′r′ ≡ r and qb′r + b1r

′ ≡ r′. Thus
[(b1 − 1)2 − pqb′2]r ≡ 0⇒ 2(1− b1)r ≡ 0. Also, [(b1 − 1)2 − pqb′2]r′ ≡ 0. Because r
and r′ are not both divisible by t0, b1 − 1 is divisible by 4657. Then pb′r′ and qb′r
are divisible by t0 so that b′ is divisible by 4657. The remainders of the roots
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of eq. (14) will be identical only when rem[L̃] is a unit matrix. Because rem[L4658]
is a unit matrix, eq. (30) indicates that the remainders of the roots of eq. (14) are
periodic and the length of the period is 4658. The same pair of residuals cannot
appear more than once within a single period.

The inverse of

L̃ =
(

b1 pb′

qb′ b1

)

is

L̃−1 =
(

b1 −pb′
−qb′ b1

)
.

Therefore

L−1 =
(

2qr2
1 − 1 −2pr1r2

−2qr1r2 2qr2
1 − 1

)
.

Then

L−1

(
r1

r2

)
=

(
r1

−r2

)
,

so that

rem
[
L4657

(
r1

r2

)]
=

(
rem[r1]

t0 − rem[r2]

)
.

Because rem[L2329] = rem[L−2329] = −I, also

rem
[
L2328

(
r1

r2

)]
=

(
t0 − rem[r1]

rem[r2]

)
.

This information allows us to find the roots of eq. (14), which are divisible by
t0. Let us assume that v0 is divisible by t0 in the pair of roots (v0, u0). There is an
integer n that (

v0

u0

)
= Ln

(
r1

r2

)
.

We know that

Ln =
(

c1 pc′

qc′ c1

)

and

L−n =
(

c1 −pc′
−qc′ c1

)
,

where c1 and c′ are certain roots of eq. (17). Because
(
r1

r2

)
= L−n

(
v0

u0

)

and rem[v0] = 0, we have rem[r1] = rem[−pc′u0] and rem[r2] = rem[c1u0]. Since

L2n

(
r1

r2

)
= Ln

(
v0

u0

)
,
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it follows that

rem
[
L2n

(
r1

r2

)]
=

(
rem[pc′u0]
rem[c1u0]

)
=

(
t0 − rem[r1]

rem[r2]

)

= rem
[
L2328

(
r1

r2

)]
= rem

[
L2328+k·4658

(
r1

r2

)]
.

Hence, necessarily n = 1164 + 2329 · k, where k is a non-negative integer.
By a direct calculation one can easily show that v0 is divisible by t0, when

(
v0

u0

)
= L1164

(
r1

r2

)
.

Because

rem
[
L2329

(
r1

r2

)]
=

(
t0 − rem[r1]
t0 − rem[r2]

)
,

the divisibility is also valid when k is a positive integer. Therefore v0 is divisible by
t0 if and only if n = 1164 + 2329 · k.

Further, if we assume that u0 is divisible by t0, a similar reasoning shows that
2n = 4657 + k · 4658. Then n cannot be an integer and therefore u0 cannot be
divisible by t0.

Next, we investigate eq. (17) and assume that (vn, un) are its roots. In in-
vestigating congruence (40), it already became clear that the root vn of eq. (17)
cannot be divisible by t0. Therefore it is sufficient to investigate the divisibility of
un. We remember that either eq. (33) or (34) is valid for un. In the latter case,
un = 2un−1vn−1, where (vn−1, un−1) are also roots of eq. (17). Then, if un is divis-
ible by t0, un−1 must also be divisible by t0. By repeating this reasoning, we finally
meet u1 = 2u0v0, where (v0, u0) are roots of eq. (14). Since u1 is divisible by t0
and u0 is not, necessarily v0 is divisible by t0. It is now easy to see that every un,
calculated according eqs. (33) and (34) from a v0 which is divisible by t0, is also
divisible by t0. Hence the solutions of eq. (17) we are searching for are those which
are derived using eqs. (33) and (34) from the chosen solutions of eq. (14).



7 The complete solution to Archimedes’
cattle problem

According to the preceding theory, all solutions of Archimedes’ cattle problem can
be calculated according to the following procedure:

Constants r1 and r2 are defined in eqs. (23) and L is the matrix defined in eqs.
(29) and (27). Let k be an arbitrary non-negative integer and(

v0(k)
u0(k)

)
= L1164+2329k

(
r1

r2

)
. (45)

According to eqs. (33) and (34), we next calculate vn(k) and un(k) from the formulas

vn(k) =
{

2 · 609 v0(k)2 − 1
2 v2

n−1(k)− 1
when n = 1
when n = 2, 3, . . .

un(k) = 2un−1(k) vn−1(k) when n = 1, 2, . . .
(46)

Next eqs. (12) and (8) give the value of Q = 3 · 11 · 29 · u2v2, where u and v are
accepted solutions of eq. (14) or (17). Hence the solutions vn(k) and un(k) define
the coefficient

Qn(k) = 3 · 11 · 29 · u2
n(k) v2

n(k), (47)

and
Q′n(k) = Qn(k)/4657. (48)

Finally, the numbers of bulls and cows of different colours are obtained by inserting
Qn(k) in eqs. (2) and Q′n(k) in eqs. (4).

The smallest solution of the Cattle Problem is now obtained by first calculating
a vector

(
v
u

)
=

(
109931986732829734979866232821433543901088049
30784636507697855142356992218944109072681060

392567302329690546856394748066206816187916440
109931986732829734979866232821433543901088049

)1164

×
(

300426607914281713365
84129507677858393258

)
. (49)
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The total number of cattle is then given by

T = 6299 · 957 · u2v2 + 21054639 · 957 · u2v2/4657. (50)

Here the first and second term give the number of bulls and cows, respectively.



8 Calculation of hi and its connection to
continued fractions

In Section 4, the necessary conditions for the coefficients hi were given, but no
method was presented for calculating their values. In the following, such a calcu-
lation method is derived. Connections between the theory and continued fractions
are also examined.

Our task is to determine the value of hi for the equation Aix
2
i+1 + Bixi+1xi +

Cix
2
i = 1, where AiCi < 0 and (B2

i − 4AiCi)1/2 /∈ Z. Then equation

Ai + Biz + Ciz
2 = 0 (51)

has one and only one positive irrational real root zi. We denote the integer part
of a number by �·
. Because the expression on the left-hand side of eq. (51) has
opposite signs for z = hi and z = hi + 1, necessarily hi = �zi
.

We can now obtain a formula for determining the value of hi. We adopt the
notations ∆ and δ for the integer and decimal parts of (B2

i − 4AiCi)1/2, respectively,
and notice that ∆ and δ are constants, because (B2

i − 4AiCi)1/2 is invariant. The
positive root of eq. (51) is

zi =
−Bi ± (∆ + δ)

2Ci
, (52)

where the sign in the numerator is chosen to be the same as the sign of Ci. If Ci > 0,
(−Bi + ∆)/(2Ci) = �(−Bi + ∆)/(2Ci)
+ µ/(2Ci), where µ ∈ Z and 0 ≤ µ < 2Ci.
Because 0 < δ < 1, we see that 0 < (µ + δ)/(2Ci) < 1 and therefore

hi = �zi
 =
⌊−Bi + ∆

2Ci

⌋
. (53)

In the case of Ci < 0, we have (−Bi−∆)/(2Ci) = �(−Bi−∆)/(2Ci)
+µ/(2Ci),
where µ ∈ Z and 2Ci < µ ≤ 0. Because −1 < −δ < 0, obviously 0 < (µ−δ)/(2Ci) <
1, so that

hi = �zi
 =
⌊−Bi −∆

2Ci

⌋
. (54)
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Depending on the sign of Ci, the value of hi can always be calculated either from
eq. (53) or (54).

The connection of the theory to continued fractions is revealed by the following
line of thought. Inserting zi = hi + 1/z′i+1 in eq. (51), we obtain

Ci + (Bi + 2hiCi)z′i+1 + (Ai + hiBi + h2
iCi)(z

′
i+1)

2 = 0. (55)

According to eq. (21) this can be written in the form

Ai+1 + Bi+1z
′
i+1 + Ci+1(z′i+1)

2 = 0, (56)

were Ai+1, Bi+1 and Ci+1 are the coefficients of the next quadratic equation in the
algorithmic chain. This indicates that z′i+1 = zi+1, i.e. a root of eq. (51) for the
index i+1. Starting from i = 1, it is now easy to see that the choice of the numbers
hi = �zi
 is equivalent to finding a continued fraction expansion of the positive root
of equation A1 + B1z + C1z

2 = 0. Then it is also clear that the coefficients hi,
obtained in solving Pell’s equation y2 − Ax2 = 1 with the present method, create
the continued fraction expansion of A1/2.

Finally, we compare the usual method of calculating the continued fraction ex-
pansion of a quadratic irrational number z1 with the present theory. Unconven-
tionally, we start the indexing from 1 instead of 0, and denote the terms of the
expansion by h′i. Let z1 be the positive root of equation A1 +B1z +C1z

2 = 0 with
C1 > 0. Now z1 = (m1 +

√
D)/q1, where m1 = −B1 and q1 = 2C1 and D is the

discriminant of the quadratic equation. In calculating continued fractions the first
term is given by h′1 = �z1
, i.e. h1 = h′1.

The next step in the usual method is to calculate m2 = h′1q1 − m1 and q2 =
(D −m2

1)/q1. In the present algorithm, the corresponding step is to carry out the
transformation to equation A2 +B2z +C2z

2 = 0 using the coefficient h = h1 = h′1.
Then it is noticed that m2 = 2h1C1 + B1 = B2 and q2 = [B2

1 − 4A1C1 − (2h1C1 +
B1)2]/(2C1) = −2C2. In calculating continued fractions, the following task is to
create a new irrational number z′2 = (m2 +

√
D)/q2. The same step in the present

algorithm is to solve the positive root of equation A2 + B2z + C2z
2 = 0. Since

C2 > 0, this gives z2 = (B2 +
√
D)/(−2C2) and, obviously, z′2 = z2.

Now, of course, h′2 = �z′2
 = �z2
 = h2. By repeating the above operations, we
see that m3 = B3 and q3 = 2C3 and, in general,mi = Bi and qi = (−1)i+1 · 2Ci.
Hence, the same auxiliary quantities are actually calculated in both methods. The
standard method is clearly better in calculating the continued fraction expansion
of a number, since it does not imply finding a quadratic equation with integer
coefficients, which would have the number as its root.



9 Computer calculations

The algorithm was programmed using Mathematica 3.0 on a laptop Macintosh
PowerBook 3400c computer with a PowerPC 603ev processor at 240 MHz, 144
MB RAM and 2.8 GB disk.

The calculation time was measured by means of the Timing command. All
output was suppressed by means of semicolons, so that the times do not include the
conversion of the computer internal presentation into strings of ASCII characters.
Only after calculation were the results or parts of the results output in files or on
the screen. The results were always checked by studying that they fulfilled the seven
equations and the numbers of cows are integers. The latter is needed because the
calculation of the numbers of cows involves a division. The conditions of square
and triangular numbers were also checked for the first three solutions. This was
not done for the longer solutions, because the time and memory consumption in
calculating the square roots is too high.

The time needed for a full computation of the smallest result was about 7.6 s.
This time can be compared with the time taken by the square and triangular number
checks, which was about 225 s each. All the other checks took only a fraction of
a second. The time needed to write each number in a file was 190–200 s. Hence
the total time is about half an hour. This mainly consists of producing the ASCII
output, the actual computing time being only a tiny fraction of it.

A large number of solutions, up to the length of nearly 5 million digits, were
calculated. Only the first three of them were completely written in files; of the
others, the first and last digits were printed. The lengths and the fifty first and
fifty last digits of the total number of cattle for the first 20 solutions as well as
the computing times are shown in Table 4. It is seen that the number of digits is
approximately a multiple of 206545 or 206546. Also, the last three digits for the
first five solutions is 800, 200, 200, 800 and 000, and after this, the cycle is repeated
again and again. All the computing times are for complete calculations from the
very beginning, i.e. without making use of the previous results. An apparent feature
in these times is that, after the fifth solution, every second time is smaller than the
previous one. This results from the fact that, once a solution of eq. (14) is found, a
sequence of solutions of eq. (17) is easily calculated. For instance, in order to obtain
solutions 2, 4, 8 and 16, it is sufficient to calculate only L1164 but, for solutions 3,
5, 7, 9, 11, 13, 15, 17 and 19, higher powers of L must be computed.
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In order to compare the speeds of the two algorithms, a programme for the
method used by Vardi [4] was also written. The calculation of ε4658 = a1 +
b1
√

4729494 in the way described by Vardi took about 10.7 s. Instead of this,
however, a complex number a1 + ib1

√
4729494 was calculated, which took 20.7 s.

This was done because it provides an easy way of extracting a1, needed in the
continuation. The additional 10 s is not an essential increase, because it is only a
small part of the total time. The remaining multiplications, divisions and additions
increased the total time to 438 s. Hence the numerical efficiency of the two meth-
ods is reflected by the times 7 s and 7 min in the same task. The time reported by
Vardi for the smallest solution was 1.5 h with a Sun workstation. This must contain
writing the nine resulting numbers in a file. With the present laptop computer, the
total time of computing and writing in files was about 36 min.



10 Discussion

The most essential point in the above solution of the cattle problem is solving
quadratic Diophantine equations of a certain specific type. Unlike some previous
methods, the present one does not use continued fractions, although it has a close
connection to them. This relationship is reflected by the fact that the coefficients
hi in Table 2 are the same as the partial quotients in the continued fractions pre-
sentation of

√
7766 · 609. The reason for this connection was explained in Chapter

8.
The benefits of the new method are evident. Only the basic arithmetic opera-

tions of integer numbers are needed in understanding the solution and in making
the calculations. No advanced theorems of number theory are applied. The numer-
ical solution is especially suitable for a computer. Another benefit is that, even if
the number of steps in the algorithm were very great, the calculation will not get
more elaborate when proceeding along the chain. This is because B2

i − 4AiCi re-
mains constant and Ai and Ci will always have opposite signs so that the numerical
values of the coefficients will not grow excessively. Therefore the algorithm is also
applicable when the roots are very big.

The method makes use of the well known ideas of linear transformation and
infinite descent in a new way. Unlike the old solutions, the present one is based on
transformations of Diophantine equations. This leads to the fact that the calcula-
tions are limited to integer numbers, and the concepts of irrational numbers or even
fractions are not needed at all.

The purpose of this paper is not to create a brief and elegant solution to the
cattle problem but, rather, to present it in the form it was originally discovered.
It seems probable, for instance, that the discussion associated with the rejection of
equations in Chapter 3 could be omitted. The line of thought is roughly as follows.
We know that Pell’s equation y2 −Dx2 = 1 always has a solution. Let us suppose
that there are two equations qy2 − px2 = 1 and q′y2 − p′x2 = 1 such that both
equations have a solution and qp = q′p′ = D. Then one can show that there is an
exit to the same Pell equation from the algorithm loop of each of these equations.
Conversely, both loops can be developed starting from the same Pell equations, and
therefore the loops are identical. Hence the two equations are necessarily identical.
This means that, in addition to Pell’s equation, there can be at most one equation
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Table 4. The number of digits, the 50 first and last digits and the com-
puting times of the twenty first solutions.

No of digits The first/last 50 digits Time/s
1 206545 77602714064868182695302328332138866642323224059233. . . 7.6

05994630144292500354883118973723406626719455081800
2 413091 44009490043932285816719235169348369864194234934020. . . 16.6

11581193275201859189229977601612293349744397607200
3 619637 24958343754678123578712999230980999881561136361147. . . 42.3

44919334686973352593735579708551482776099647416200
4 826183 14154195432731766172032653110432770554478706512805. . . 44.3

29497196996042055318793576061599829319808330908800
5 1032728 80270249627607350627294754707634710725064411374829. . . 96.8

80699303632338364623950738864748504565921321045000
6 1239274 45522283522934483532429086649904673863640229366397. . . 90.5

29173911528967704349900291189294413031960053344800
7 1445820 25816268253259718324690345064768807693002781855400. . . 167.5

77893495392969120303854296342149319432846317888200
8 1652366 14640735370590271106027979075734871733820823638582. . . 126.1

49782035518048443581883698403835052875802227315200
9 1858911 83029479740778480390992214567494033971458643169338. . . 248.4

80611991400119558164544000428857887778833160825800
10 2065457 47087078152320997072282938915190218666297665303416. . . 203.8

86570434640037157265986582633249636788416084180000
11 2272003 26703683268219368825480577944889988732920773505237. . . 316.6

21017329543901176145353890642532008685065245697800
12 2478549 15143999756846876938673801002103600654442055000072. . . 227.6

52109101586725248914580549990213380909696848259200
13 2685094 85883556336335680939605742561053086924100922738733. . . 429.7

87338942332263137435109633401710976139323897304200
14 2891640 48705661432949561361357338946050302491455632914808. . . 352.9

56066134324557929672530134983582390963742024832800
15 3098186 27621602514117834486805751043626655217904227982861. . . 530.7

31104306025398924814315115126268750833676689405000
16 3304732 15664563481972963809538732671608027827276540861217. . . 373.7

69581836924762033719965210978567445461511752140800
17 3511277 88835739691549075450127051132588835004913462225449. . . 678.1

67523439543398286074167078250401030418369028720200
18 3717823 50379882309690068540226701421929494094046458818823. . . 531.3

24058601259500490631702992399535840646118017383200
19 3924369 28571074551199738707258038519334066987791101057040. . . 816.8

05306789951035666709718661605336793986024602929800
20 4130915 16203021197872170587157008485464224005358445875774. . . 563.2

24538558925624110968323032772706512285357136720000

which has a solution and satisfies the above conditions. This equation could be
found by applying the algorithm to Pell’s equation.

Excluding the final results in Chapter 9, all calculations in this work were carried
out by a simple pocket calculator. This was done in order to show that no computer
is needed in deriving the theory. It also proves that the calculations could actually
be done by means of an abacus. The use of an abacus would be even easier since
one can always construct an abacus which is big enough for all numbers needed. In
this work the small number of digits in the calculator made it necessary to divide
the numbers into smaller parts.



38

The reason why the cattle problem was not solved starting from Pell’s equation
was to show how Diophantine equations of a more general form can be solved
and what happens if no solutions exist. In addition, this procedure revealed the
relationship between eqs. (14) and (17) and their roots. The method also gives
a simple way of deriving a great number of new solutions to the cattle problem
starting from a single solution. A small practical benefit is that eq. (14) leads to
roots (r1, r2), whereas Pell’s equation implies a longer calculation of much greater
coefficients a1, a2, a3 and a4. In the case of eq. (14), the same coefficients are
obtained in a simple way from the roots (r1, r2).

It is surprising how difficult the cattle problem has turned out to be, although
it can indeed be solved by means of simple methods. The only tools used in the
present solution which are not known to have been available to ancient Greeks are
Fermat little theorem and matrix algebra. The importance of these implements is
not so essential in this work that one could not manage without them, although
they clearly make the analysis easier.

Because the theory of quadratic forms by Gauss is similar to the treatment of
quadratic forms in the present algorithm, Gauss has actually been very close to the
solution of the cattle problem. Certainly the reason why he did not do it was, at
least partly, that he had no interest in individual problems which seemed to have
no wider importance. In addition, he also produced so much mathematical theory
and much else that lack of time may be an explanation.

Much consideration has been put on the question whether Archimedes himself
had known a solution to the cattle problem. This work overturns at least the
argument which states that, at Archimedes’ time, mathematics was too undeveloped
to allow finding the solution. Also, Archimedes admits the difficulty of the problem
but gives to understand that the solution is possible. Because it is not evident that
the problem has a solution at all, it is not likely that Archimedes would have made
such a statement without knowing the solution.

Vardi [4] proposes that Archimedes would hardly have been able to solve the
complete cattle problem due to the tremendous size of the answer, and he would
have presented the problem because he believed (without being able to prove it)
that all problems leading to Pell’s equation do have a solution. However, it is
sufficient for a complete solution that one is able to present an algorithm which
leads to the answer, the actual numerical answer is not essential. It is remarkable
that the wording of the original problem hints in this direction: In the first part of
the problem the exact numbers of bulls and cows of various colours are explicitly
asked, whereas in the second part of the problem the task is to ’find out all these
things and gather them together in one’s mind’. The latter can be interpreted to
mean finding an algorithm rather than a numerical answer. Although it is not
shown in this work, one should notice that the present method can be used as a
basis for proving that Pell’s equation always has a solution. One should also notice
that the transformation in the present algorithm is similar to the Euclidean formula
for calculating continued fractions. Archimedes could hardly have been unaware of
the Euclidean algorithm, and applying it to the cattle problem might have been a
small step for him.

The cattle problem has been considered to be difficult because of the large
numbers it contains. These large numbers, however, make no obstruction for finding
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the method of solution. The problem was perhaps created to contain large numbers
only in order to ensure that the solution cannot be found by means of guesswork or
trial and error.

My personal opinion is that Archimedes did know the solution of the cattle
problem and the above method of solving the Diophantine equations.



Appendix A

The English translation of Archimedes’ cattle problem, according to Thomas [5], is
as follows:

If thou art diligent and wise, O stranger, compute the number of cattle of the
Sun, who once upon a time grazed on the fields of the Thrinacian isle of Sicily,
divided into four herds of different colours, one milk white, another glossy black,
the third yellow, and the last dappled. In each herd were bulls, mighty in number
according to these proportions:

Understand, stranger, that the white bulls were equal to a half and a third of
the black together with the whole of the yellow, while the black were equal to the
fourth part of the dappled and a fifth, together with, once more, the whole of the
yellow. Observe further that the remaining bulls, the dappled, were equal to a sixth
part of the white and a seventh, together with all the yellow.

These were the proportions of the cows: The white were precisely equal to the
third part and a fourth of the whole herd of the black, while the black were equal to
the fourth part once more of the dappled and with it a fifth part, when all, including
the bulls, went to pasture together. Now the dappled were equal in number to a
fifth part and a sixth of the yellow herd. Finally, the yellow were in number equal
to a sixth part and a seventh of the white herd.

If thou canst accurately tell, O stranger, the number of cattle of the Sun, giving
separately the number of well-fed bulls and again the number of females according
to each colour, thou wouldst not be called unskilled or ignorant in numbers, but
not yet shalt thou be numbered among the wise. But come, understand all these
conditions regarding the cows of the Sun.

When the white bulls mingled their number with the black, they stood firm,
equal in depth and breadth, and the plains of Thrinacia, stretching far in all ways,
were filled with their multitude. Again, when the yellow and the dappled bulls were
gathered into one herd they stood in such a manner that their number, beginning
from one, grew slowly greater till it completed a triangular figure, there being no
bulls of other colours in their midst nor none of them lacking.

If thou art able, O stranger, to find all these things and gather them together
in your mind, giving all the relations, thou shalt depart crowned with glory and
knowing that thou hast been adjudged perfect in this species of wisdom.



Appendix B

The effect of prime number 353 on the solvability of eqs. (14)–(17) is investigated
in this appendix. Because 353 is a factor of p in these equations, only the numbers
q must be studied.

It follows from the Fermat little theorem that, for each natural number a which
is not divisible by 353, there is the smallest natural number k that ak ≡ 1(353).
This number k must be a factor of 352. It is easy to show by calculation that, when
a = 5, k = 352. Therefore, for each natural number a′ which is smaller than 353,
there is such a natural number k1 that 5k1 ≡ a′(353).
Eq. (14): In this case q = 3 · 7 · 29 = 609. Take a k1 for which 5k1 ≡ 609(353).
Because 60911 ≡ 1(353), it follows that 511k1 ≡ 1(353)⇒ 11k1 = 352k′, where k′ is
a certain unknown natural number. Thus k1 = 32k′.

Take now v = 5k
′′
. Can we choose k′′ in such a way that 609v2 ≡ 1(353)? Now

609v2 ≡ 532k′ · 52k′′ = 532k′+2k′′ ≡ 1(353). The latter congruence is valid when
32k′ + 2k′′ = 352k′ ⇒ k′′ = 160k′. Hence it has been possible to find a v such that
609v2 − 1 is divisible by 353. Therefore eq. (14) will not be rejected.
Eq. (15): In this case q = 2 · 3 · 7 = 42. With the same reasoning as above:
5k1 ≡ 42(353). 424 ≡ 1(353) ⇒ 54k1 ≡ 1(353) ⇒ 4k1 = 352k′ ⇒ k1 = 88k′.
v = 5k

′′ ⇒ 42v2 ≡ 588k′+2k′′(353) ⇒ 42v2 ≡ 1(353), when 88k′ + 2k′′ = 352k′ ⇒
k′′ = 132k′. Hence equation (15) will not be rejected.
Eq. (16): In this case, q = 2 · 29 = 58. 5k1 ≡ 58(353). 5811 ≡ 1(353) ⇒
511k1 ≡ 1(353) ⇒ 11k1 = 352k′ ⇒ k1 = 32k′. v = 5k

′′ ⇒ 58v2 ≡ 532k′+2k′′(353).
532k′+2k′′ ≡ 1(353) when 32k′ + 2k′′ = 352k′ ⇒ k′′ = 160k′. Hence, equation (16)
will not be rejected.
Eq. (17): In this case, q = 1. Obviously, the smallest solution of the equation is
u = 0, v = 1. Hence, equation (17) cannot be rejected.
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