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ABSTRACT: The geometry of an Archimedes screw is governed by certain external parameters (its outer radius,
length, and slope) and certain internal parameters (its inner radius, number of blades, and the pitch of the blades).
The external parameters are usually determined by the location of the screw and how much water is to be lifted.
The internal parameters, however, are free to be chosen to optimize the performance of the screw. In this paper
the inner radius and pitch that maximize the volume of water lifted in one turn of the screw are found. The
optimal parameter values found are compared with the values used in a screw described by the Roman architect
and engineer Vitruvius in the first century B.C., and with values used in the design of modern Archimedes
screws.
INTRODUCTION

One of the oldest machines still in use is the Archimedes
screw, a device for lifting water for irrigation and drainage
purposes. Its invention has traditionally been credited to Ar-
chimedes (circa 287–212 B.C.). For example, Diodorus Si-
culus (Greek historian, circa first century B.C.) writes

men easily irrigate the whole of it [an island in the delta of
the Nile] by means of a certain instrument conceived by
Archimedes of Syracuse, and which gets its name [cochlias]
because it has the form of a spiral or screw.

And from Athenaeus of Naucratis (Greek historian, circa A.D.
200):

The bilge-water [of the ship Syracusia], even when it be-
came very deep, could easily be pumped out by one man
with the aid of the screw, an invention of Archimedes.

(See references under Diodorus Siculus and Athenaeus of Nau-
cratis.) Archimedes, however, made no reference to it in his
extant works [cf. Heath (1897) and Dijksterhuis (1938)], and
it may be that he simply transmitted its knowledge from Egypt
(where it is believed he studied in Alexandria under the stu-
dents of Euclid) to Syracuse (his native city in Sicily). On the
other hand, in defense of Archimedes: no mention of the de-
vice exists before his time, its design involves the type of
geometry in which he excelled, and his abilities as an inventor
of mechanical and military machines are well documented.

The Roman engineer and architect Vitruvius gave a detailed
and informative description of the construction of an Archi-
medes screw in his De Architectura, written in the first century
B.C. (See reference under Vitruvius.) Vitruvius’s description
contributed greatly to keeping the device well known through-
out the ages, and the particular screw he described will be
used throughout this paper as a test case.

Vitruvius’s screw began with a tree trunk shaped into a cy-
lindrical core (the ‘‘inner cylinder’’) whose length is 16 times
its diameter (Fig. 1). On this cylindrical core eight intertwined
helical blades (also called ‘‘flights’’ or ‘‘starts’’) were con-
structed by nailing withes (slender flexible willow twigs) to-
gether up to a height equal to the radius of the core. The period
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FIG. 1. Vitruvius’s Eight-Bladed Screw as Described in his De
Architectura. Diagram by Morris Hicky Morgan (Vitruvius Ref-
erence)

(or ‘‘pitch’’) of these blades was equal to the circumference
of the cylindrical core. Finally, an outer cylindrical covering
(the ‘‘outer cylinder’’) of wooden planks was nailed to the
helical blades. Liquid pitch was smeared over all of the parts
during their assembly to make the screw watertight. The rigid
screw was mounted so that it could be rotated along its length
(Fig. 2) and was tilted in the direction of the hypotenuse of a
3-4-5 triangle (a ‘‘Pythagorean right-angled triangle,’’ as Vi-
truvius calls it). Its bottom end was immersed in a body of
water (the ‘‘lower reservoir’’), and through the rotation of the
screw water was lifted to the top end of the screw into an
‘‘upper reservoir.’’

When an Archimedes screw is tilted, ‘‘buckets’’ that can
trap water are formed between the blades. These buckets ap-
pear to move upward when the screw is rotated, carrying the
water within them. The screw collects water from the lower
reservoir, where the buckets are formed, and empties it into
the upper reservoir, where the buckets are unformed. When
operated manually it is rotated by a crank (Fig. 3) or by a man
walking around the circumference of the outer cylinder in a
treadmill manner.

In modern industrial screws, the outer cylinder is usually
fixed and the blades attached to the inner cylinder are rotated
within it (Fig. 4). This allows the top half of the outer cylinder
to be eliminated so that a stationary trough is formed from the
bottom half of the outer cylinder. Such a construction permits
easy access to the interior of the screw, in order to remove
debris and for routine maintenance. In addition, the stationary
outer cylinder relieves the moving blades and inner cylinder
of some of the weight of the water. A disadvantage of this
design is that water can leak down through the small gap be-
tween the moving blades and the stationary trough. However,
this leakage can be considered an advantage in that it allows
the screw to drain when it stops rotating.

The Archimedes screw has had a resurgence in recent years
because of its proven trouble-free design and its ability to lift
wastewater and debris-laden water effectively. It has also



FIG. 2. Profile of Three-Bladed Archimedes Screw
FIG. 3. Two-Bladed Archimedes Screw in Use in Modern
Times in Egypt to Irrigate Fields
proved valuable in installations where damage to aquatic life
must be minimized.

The purpose of this paper is to examine the optimal design
of an Archimedes screw. By this is meant that geometry that
will maximize the amount of water delivered to the upper res-
ervoir in one turn of the screw. This optimization will be per-
formed under the assumption that the outer radius of the screw
is specified, for clearly the amount of water lifted in each
revolution can be continually increased by continually increas-
ing this radius.

The amount of water lifted per unit time can also be in-
creased by increasing the rotational velocity of the screw.
However, there is a practical limit to how fast one can rotate
the screw. A handbook on the design and operation of Archi-
medes screws (Nagel 1968, p. 37) states that, based on field
experience, the rotational velocity of a screw in revolutions
per minute should be no larger than 50/D2/3, where D is the
diameter of the outer cylinder in meters. Thus a screw with
an outside diameter of 1 m should have a maximum rotational
velocity of 50 rpm. If the screw is rotated much faster, tur-
FIG. 4. Seven 96-Inch-Diameter, 3-Flight Screw Pumps That Lift Wastewater from Pretreatment Section to Balance of TreatmentPlant
in Memphis, Tenn. [Each Pump Has Capacity of 19,900 gal./min (Courtesy Lakeside Equipment Corp., Bartlett, Ill.)]
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FIG. 6. Views of Single Bucket Looking Down Two Screws
with Transparent Blades and Different Pitches (Both Screws Are
8-Bladed and Their Inner Radius is Half Their Outer Radius;
Dark-Shaded Region Is Horizontal Water Surface and Light-
Shaded Region Is Portion of Bucket in Contact with Blade
Nearer the Top of Screw)

FIG. 5. Profile View of Segment of Two-Bladed Archimedes
Screw

bulence and sloshing prevent the buckets from being filled and
the screw simply churns the water in the lower reservoir rather
than lifting it.

PROBLEM FORMULATION

Fig. 5 is a profile view of a segment of an Archimedes screw
showing how the buckets are formed between pairs of adjacent
blades. The buckets move up the screw as it is rotated clock-
wise when viewed from the upper reservoir. (Throughout this
paper the screws are oriented for clockwise rotation). The in-
ner and outer edges of each blade determine two sinusoidal
curves of the same period (or pitch) and phase. One has an
amplitude equal to the inner radius of the screw and the other
has an amplitude equal to the outer radius. The angle u that
the screw makes with the horizontal determines its slope tan u.
Now defined are the following three ‘‘external’’ parameters:

R = radius of screw’s outer cylinder (m)o

L = total length of screw (m)

K = slope of screw (dimensionless)

These external parameters are usually determined by the site
of the screw and the materials available for its construction.
In this paper, these three parameters are taken as fixed. In
addition to these parameters, the following three ‘‘internal’’
parameters are needed to completely specify the geometry of
the screw:

R = radius of screw’s inner cylinder (m) (0 # R # R )i i o

L = pitch (or period) of one blade (m) (0 # L # 2pR /K )o

N = number of blades (dimensionless), N = 1, 2, . . . ,

By ‘‘one cycle of the screw’’ is meant a segment of the screw
whose length is equal to one pitch of the screw. The volume
of one cycle of the screw is 2pR L.o

By a ‘‘chute’’ is meant a region of the screw bounded by
two adjacent blades and the inner and outer cylinders. The
region between the inner and outer cylinders of the screw con-
sists of N disjoint congruent chutes separated by the N blades.
The volume of each chute is 22 2p(R R )L/N.o i

By a ‘‘bucket’’ is meant one of the maximally connected
regions occupied by the trapped water within any one chute.
Each bucket is filled with water at the lower reservoir and is
emptied into the upper reservoir. Within one cycle of the screw
the volume of the water within all the buckets is N times the

volume of one bucket. The volume of one bucket is denoted
by VB. It is a complicated function of N, K, L, Ro and Ri.

The restriction L # 2pRo /K given above on the pitch L of
the screw needs some discussion. In order for water to be
trapped in the screw, it is necessary that the sinusoidal curve
in Fig. 5 defining the outer edge of a blade tilts downward as
it crosses the axis of the screw. In terms of the angles u and
a in the figure, it is necessary that u # a or, equivalently,
tan u # tan a. Now tan u = K by definition, and tan a =
Ro(2p/L) since the sinusoidal curve has amplitude R0 and
period L. The condition tan u # tan a is thus K # Ro(2p/L),
which is just L # 2pRo /K.

Fig. 5 also shows the angle b that the sinusoidal curve de-
fining the inner edge of a blade makes with axis of the screw.
Because the inner sinusoidal has amplitude Ri and period L,
it follows that tan b = Ri(2p/L). If u # b, so that the inner
sinusoidal curve tilts downward as it crosses the axis of the
screw, then the horizontal water level in a bucket is tangent
to this inner sinusoidal curve. As above, the condition u # b
can be expressed as L # 2pRi /K.

If L lies in the interval (2pRi /K, 2pRo /K), then the hori-
zontal water level is right at the point where the inner and
outer sinusoidal curves cross the axis of the screw. At that
point the inner sinusoidal curve has positive slope (with re-
spect to the horizontal) and the outer sinusoidal curve has neg-
ative slope. The buckets of water that form in this case are
rather small and in, in fact, will not be in contact with the
inner cylinder. Summarizing, the horizontal water level of a
bucket is

1. Tangent to the inner sinusoidal curve in a profile view if
L [ (0, 2pRi /K) [Fig. 6(a)].

2. At the intersection of the outer and inner sinusoidal
curves in a profile view if L [ (2pRi /K, 2pRo /K) [Fig.
6(b)].

Returning to our optimization problem, the following quantity
is now defined:

3V = volume of water in one cycle of the screw (m )T

This quantity is also the volume of water emptied into the
upper reservoir with each turn of the screw—precisely the
quantity to be maximized. Note also that VT = NVB, expressing
the fact that N buckets of water are emptied into the upper
reservoir with each turn of the screw. The basic problem of
this paper can now be stated as follows:

Problem: Given N, Ro, and K, find values of Ri and L that
maximize VT.

In words: Given the number of blades, outer radius, and slope



of an Archimedes screw, find the inner radius and pitch that
will maximize the volume of water emptied into the upper
reservoir with each turn of the screw.

In this paper it is assumed that the blades have negligible
thickness. With this assumption the volume of water in one
cycle monotonically increases with the number N of blades. If
the blades had some nonnegligible thickness, however, they
would occupy an increasing fraction of the volume of the
screw as their number increased and a point of diminishing
returns would be reached. One could then include the deter-
mination of an optimal N in the problem statement. But in
modern screws the number of blades is usually 1, 2, or 3,
because of manufacturing, weight, and cost constraints. It is
thus assumed that the number of blades is predetermined, and
their thickness is neglected in the computations.

DIMENSIONLESS PARAMETERS

The analysis of the optimization problem is begun by de-
fining a dimensionless parameter n as the ratio of VT (the vol-
ume of water in one cycle of the screw) to (the total2pR Lo

volume of one cycle of the screw):

VT
n = = volume ratio (1)2pR Lo

= fraction of the volume of one cycle of the screw occupied
by water.

This volume ratio is also the fraction of the entire screw
occupied by water if the ends where water is either entering
or leaving the screw are neglected. By its definition n is a
number between 0 and 1. Notice that maximizing VT is not the
same as maximizing n.

Two more dimensionless parameters are defined as follows:

Ri
r = = radius ratio (0 # r # 1) (2)

Ro

and

KL
l = = pitch ratio (0 # l # 1) (3)

2pRo

Because Ro = maximum value of the inner radius Ri, the radius
ratio r is the ratio of the actual inner radius to its maximum
possible value. Similarly, because 2pRo /K = maximum pitch
for which buckets will form, the pitch ratio l is the ratio of
the actual pitch to its maximum possible value. In the case of
Vitruvius’s screw: Ri = (1/2)Ro, L = 2pRi, K = 3/4, and so r
= 1/2 and l = 3/8.

A dimensional analysis shows that n depends only on N, r,
and l. This quantity can be written as n(N, r, l) to emphasize
this fact. From the above three equations it follows that

2 32p Ro
V = ln(N, r, l) (4)T S DK

Given N, Ro, and K, the problem of maximizing VT with re-
spect to Ri and L can then be reduced to maximizing ln(N,
r, l) with respect to r and l, each restricted to the interval
[0, 1]. Let the values of r and l that maximize ln(N, r, l)
be denoted by r* and l*, respectively. Then the optimal values
of Ri, L, and VT are given by

*R = r*R (5)i o

2pR l*o
L* = (6)

K

and

FIG. 8. Cross Section of 8-Bladed Screw with Zero Pitch Ratio
(l = 0)

FIG. 7. Graph of n(N, r, l) (Volume Ratio) versus r (Radius Ra-
tio) and l (Pitch Ratio) for 8-Bladed Screw (N = 8)

2 32p Ro*V = l*n(N, r*, l*) (7)T S DK

VOLUME OF A BUCKET

The algorithm for computing the volume ratio n(N, r, l)
for a specific set of screw parameters N, r, and l is described
in Appendix I. As an example of this algorithm, consider the
volume ratio for Vitruvius’s 8-bladed screw. Since r = 1/2 and
l = 3/8 for his screw, the desired volume ratio is n(8, 1/2,
3/8). The algorithm gave 0.1703 for this volume ratio, so that
17% of Vitruvius’s screw was occupied by water when oper-
ating. With this value of n(8, 1/2, 3/8), Eqs. (1–3) and the
fact that K = 3/4 leads to

3V = 1.68R (8)T o

In the next section this formula is compared with the corre-
sponding formula that the optimization algorithm provides.

Fig. 7 is plot of n(N, r, l) for N = 8 and all values of r
and l between 0 and 1. Plots of n(N, r, l) for other values
of N are similar, with n(N, r, l) monotonically increasing as
N increases for each fixed r and l.

Fig. 7 shows that the volume ratio has a global maximum
for some value of r when l = 0. The case l = 0 arises when
either the slope or the pitch of the screw is zero. Although
neither situation is practical, they may be considered as the
limiting cases when the slope or the pitch approaches zero.
Fig. 8 is a typical cross section of a screw when l = 0, show-
ing how the water level is tangent to the top of the inner
cylinder. Every cross section of the screw has the same water
profile when l = 0 and this is true regardless of the number
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TABLE 1. Optimal Ratio Parameters of Archimedes Screw for
Various Numbers of Blades

Number of
blades

N
(1)

Optimal
radius ratio

r*
(2)

Optimal
pitch ratio

l*
(3)

Optimal
volume-per-

turn ratio
l*n(N, r*, l*)

(4)

Optimal
volume ratio
n(N, r*, l*)

(5)

1 0.5358 0.1285 0.0361 0.2811
2 0.5369 0.1863 0.0512 0.2747
3 0.5357 0.2217 0.0598 0.2697
4 0.5353 0.2456 0.0655 0.2667
5 0.5352 0.2630 0.0696 0.2647
6 0.5353 0.2763 0.0727 0.2631
7 0.5354 0.2869 0.0752 0.2619
8 0.5354 0.2957 0.0771 0.2609
9 0.5356 0.3029 0.0788 0.2601

10 0.5356 0.3092 0.0802 0.2592
11 0.5358 0.3145 0.0813 0.2586
12 0.5360 0.3193 0.0824 0.2580
13 0.5360 0.3234 0.0833 0.2574
14 0.5360 0.3270 0.0841 0.2571
15 0.5364 0.3303 0.0848 0.2567
16 0.5362 0.3333 0.0854 0.2562
17 0.5362 0.3364 0.0860 0.2556
18 0.5368 0.3380 0.0865 0.2559
19 0.5364 0.3404 0.0870 0.2555
20 0.5365 0.3426 0.0874 0.2551
21 0.5370 0.3440 0.0878 0.2553
22 0.5365 0.3465 0.0882 0.2544
23 0.5369 0.3481 0.0885 0.2543
24 0.5367 0.3500 0.0888 0.2538
25 0.5371 0.3507 0.0891 0.2542
? ? ? ? ?
? ? ? ? ?
? ? ? ? ?
` 0.5394 0.3953 0.0977 0.2471

FIG. 9. Two views of Graph of ln(N, r, l) (Volume-per-Turn Ra-
tio) versus r (Radius Ratio) and l (Pitch Ratio) for 8-Bladed
Screw (N = 8)

of blades the screw has. A little geometry then shows that the
fraction of the area of the cross section of the screw occupied
by water is given by

1 r2 21 2A (r) = (1 2 r ) 2 cos (r) 1 1 2 r (9)Ï0
p p

Now, because each cross section of the screw is occupied by
this same fraction of water, the volume ratio of the screw must
also be given by this expression. Consequently, (9) is the for-
mula for the curve obtained by slicing the surface in Fig. 7
with the plane l = 0; that is, A0(r) = n(N, r, 0). A little calculus
shows that A0(r) is maximized when r = =21/ 1 1 pÏ
0.30331. . . . The corresponding value of n is 0.598093. . . .
Thus no Archimedes screw can have more than 60% of its
volume occupied by water, and this maximum value is ap-
proached when the slope or pitch is very small and the inner
radius of the screw is about 30% of the outer radius.

OPTIMAL SCREW

The determination of the optimal screw is now considered.
This is the problem of finding the values of r and l in the
interval [0, 1] that maximize the function of ln(N, r, l). Fig.
9 is a plot ln(N, r, l) for an 8-bladed screw. As with n(N, r,
l), plots of ln(N, r, l) for different values of N are similar
to each other, with ln(N, r, l) monotonically increasing as N
increases.

It can be seen from Fig. 9 that ln(N, r, l) has a unique
maximum inside the unit square. This maximum was com-
puted numerically for various N using the ‘‘fmin’’ function of
MatLab (Hanselman and Littlefield 1995), which implements
a Nelder-Mead simplex search (Nelder and Mead 1965). For
an 8-bladed screw, the peak value of the volume-per-turn ratio
was found to be 0.0771, attained when r* = 0.5354 and l* =
0.2957. Eq. (7) then shows that the volume per turn in the
optimal case is given by

31.52Ro*V = (10)T
K

Table 1 gives the optimal values of the pitch and radius ratios
for screws with 1 to 25 blades, together with the corresponding
optimal values of the volume-per-turn and the volume ratios.
The last row gives the limiting value of these quantities as the
number of blades approaches infinity. It provides an upper
bound for the amount of water that can be lifted in one turn
since the volume-per-turn ratio monotonically increases as N
increases.

Fig. 10 represents the data in Table 1 in graphical form.
Notice how r* varies only in the interval (0.5352, 0.5394),
and so to two decimal places the optimal ratio is 0.54 for any
number of blades. It may be that the optimal radius is the same
for any number of blades and this slight variation of r* may



FIG. 10. Graphical Representation of Data in Table 1

be a numerical artifact resulting from the approximate numer-
ical integration needed to compute n(N, r, l) and the approx-
imate numerical optimization of ln(N, r, l).

Table 1 also shows that n(N, r*, l*) decreases from 0.2811
to 0.2471 as N increases from one to infinity. Thus, a decreas-
ing fraction of the screw is occupied by water as the number
of blades increases.

Fig. 11 shows a view of a single bucket looking down the
screw for the optimal screws with 1, 2, 3, or 4 blades. Notice
how the horizontal water surface is in one piece for a 1- or 2-
bladed piece but is in two pieces for a 3- or 4-bladed screw.
When the water surface is in one piece, there is a clear air
passage from the top to the bottom of the screw if the screw
has a complete watertight outer cylinder. However, when the
water surface is broken into two pieces by the inner cylinder,
the buckets of water close off the chutes and so air is trapped
in the spaces between the buckets in any one chute.
FIG. 11. Views Looking down Optimal 1-, 2-, 3-, and 4-Bladed
Screw of Single Bucket Lying Between Two Adjacent Blades
(Dark-Shaded Region Is Horizontal Water Surface and Light-
Shaded Region Is Portion of bucket in Contact with Blade nearer
Top of Screw)

CONCLUSIONS

Vitruvius’s screw configuration can be compared with its
optimal configuration as determined by the calculations above.
As shown in (8), the volume per turn of the Vitruvius screw
is governed by VT = The optimal volume per turn is31.68R .o

governed by (10) with K = 3/4, which gives = The3*V 2.03R .T o

optimal design thus results in a fractional increase in the water
lifted per turn given by = 2.03/1.68 = 1.21, or a per-*V /VT T

centage increase of 21%. Consequently, the output of Vitru-
vius’s screw is fairly close to that of the optimal 8-bladed
screw. In addition, its radius ratio is within 7% of the optimal
value (0.5 versus 0.5354), its pitch ratio is within 27% of the
optimal value (0.375 versus 0.2957), and the construction lines
associated with its design are much simpler than those that
would be needed to construct the optimal screw. No doubt
many generations of experience went into the design of the
screw that Vitruvius described.

Fig. 12 shows one bucket in a screw of Vitruvius’s design
and one bucket in a screw of the corresponding optimal design.

Ritz-Atro Pumpwerksbau of Nürnberg, Germany, a manu-
facturer of Archimedes screws, prepared an Archimedean
Screw Pump Handbook in 1968 to ‘‘provide the technical in-
formation needed for the calculation, planning, construction,
and operation of water pumping installations using Archime-
dean screw pumps’’ (Nagel 1968). This handbook gives cer-
tain rules of thumb for maximizing the volume of water raised
with each turn of the screw based on heuristic arguments and
field experience. In particular, it states that the ratio of the
inner radius to the outer radius should be between 0.45 and
0.55 for most conditions (Nagel 1968, p. 30). The results of
this paper show that it should be 0.54 under all circumstances
when the corresponding optimal pitch is used.

For the pitch, the handbook gives the following heuristic
rule for a screw tilted at an angle u (Nagel 1968, p. 31):

L = 2.4R if u < 307o

L = 2.0R if u = 307o

L = 1.6R if u > 307o

The result obtained in this paper is given in (6): L = (2pl*
cot u)Ro, where the numerical value of l* is given in Table 1
JOURNAL OF HYDRAULIC ENGINEERING / JANUARY 2000 / 77



FIG. 13. Graph of Ratio of Pitch of Screw to Its Outer Radius
versus Angle of Inclination of Screw When Number of Blades Is
1, 2, or 3 [Also Shown Is Piecewise Constant Approximation
Discussed in Archimedean Screw Pump Handbook (Nagel
1968)]

FIG. 12. Two Views Looking down Two 8-Bladed Screws of
Single Bucket Lying Between Two Adjacent Transparent Blades
(Dark-Shaded Region Is Horizontal Water Surface and Light-
Shaded Region Is Portion of Bucket in Contact with Blade
nearer Top of Screw)

and depends on N. Fig. 13 is a graph of L as a function of u
as given by this formula for the cases N = 1, 2, and 3. Also
in Fig. 13 is a graph of the piecewise constant formula deter-
mined by the handbook’s heuristic rule. The heuristic rule can
be seen to be a pretty good match for the exact relationship,
especially for a 2-bladed screw. The handbook further states
that to avoid a proliferation of screw designs and the concom-
itant manufacturing costs, the choice L = 2.0Ro should be
made for all angles. Fig. 13 justifies this particular simplifying
choice for 1-, 2-, and 3-bladed screws and for angles around
307.

Finally, it seems appropriate to close this paper with the
following words that Vitruvius used to close the description
of his screw:

I have now described as clearly as I could, to make them
better known, the principles on which wooden engines for
raising water are constructed, and how they get their motion
so that they may be of unlimited usefulness through their
revolutions.
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FIG. 14. Area Ratio of Typical Bucket of 3-Bladed Screw as
Function of Blade Angle

APPENDIX I. VOLUME OF A BUCKET (DETAILS)

This appendix describes the algorithm used in the paper for
the computation of the volume ratio n(N, r, l). Run an x-axis
along the axis of the screw, with x increasing going up the
screw. Select any particular bucket of the screw at any partic-
ular time and set

AB(x) = Area (m2) of the water in the cross section of the screw

at position x (m) in the selected bucket.

The volume of VB of the bucket is the integral of AB(x) over
the extent of the bucket along the x-axis. Thus, if (x0, x1) is
the interval along the x-axis over which the bucket is defined,
then

x1

V = A (x) dx (11)B BE
x0

Next define a new (dimensionless) variable by

2px
f = (12)

L

called the blade angle. The blade angle goes through 2p rad
over one cycle of the screw. With respect to the blade angle,
(11) becomes

f1
L ˆV = A (f) df (13)B BE2p f0

where ÂB(f) = function AB(x) expressed as a function of f,
and the new limits of integration are f0 = 2px0 /L and f1 =
2px1/L. Next define the dimensionless parameter

Â (f)B
g (f) = = area ratio (14)B 2pRo



FIG. 15. Cross Section of Screw for Various Values of Blade
Angle (Water in One Chute Is Darkened for Easier Identification)

which is the ratio of the cross-sectional area of the water in
one bucket to the cross-sectional area of the screw. Combining
(13) and (14) with (1), then, results in

f1
V NV NT B

n = = = g (f) df (15)BE2 2pR L pR L 2po o f0

The above concepts are illustrated in Fig. 14 with a 3-bladed
screw for which K = 3/8, L = pRo, and Ri = (1/2)Ro (thus,
N = 3, r = 1/2, and l = 3/16). The top diagram shows the
profile of the screw with the bucket shaded. Of course, the
screw is actually tilting upward with slope K = 3/8 and the
straight lines slanting downward in the diagram are the hori-
zontal water levels in the buckets. The middle diagram shows
a single bucket with the angles f0 and f1 indicated. The origin
has been chosen along the f-axis so that the equation of the
sine curve forming the outer edge of the lower blade of the
bucket is Ro sin f. The bottom diagram is a graph of gB(f)
versus f of the particular bucket selected. (The top curve in
the bottom graph is the cumulative area ratio of all of the
buckets in the screw. It is a periodic curve with period 2p/N
and its average value is n.)

Fig. 15 shows cross sections of this 3-bladed screw for val-
ues of the blade angle from 907 to 4207. The chute containing
the selected bucket is outlined heavily, and the cross section
of the bucket itself is shaded darker than the buckets in the
other two chutes. The cycle of cross sections in Fig. 15 repeats
with each pitch of the screw, that is, for every 3607 increase
of the blade angle. In fact, the pattern of cross sections actually
repeats every 1207 or, more generally, every 2p/N radians for
an N-bladed screw. Notice that for angles close to 3307 the
cross section of the bucket completely fills the cross section
of the chute so that the value of gB is 1/4, since for this screw
the cross-sectional area of each chute is one-fourth the cross-
sectional area of the entire screw.

Fig. 16 illustrates how certain angles associated with the
geometry of a bucket are determined. In both the profiles and
cross-sectional views only a single bucket is shown and only
the two blades of the chute containing the bucket are shown.
Additionally, the surfaces of the two blades and the inner and
outer cylinders have been made transparent. Looking down
into the screw in the cross-sectional view, the darker region is
the top horizontal water surface of the bucket and the lighter
region is the portion of the bucket in contact with the upper
blade of the chute. Letting y denote distance above the axis of
the screw in the profile view, the following curves in this fig-
ure have the following equations:

Outer edge of the lower (left) blade: y = R sin fo

Inner edge of the lower (left) blade: y = R sin fi

Outer edge of the upper (right) blade: y = R sin(f 2 2p/N)o

Inner edge of the upper (right) blade: y = R sin(f 2 2p/N)i

KL
Water level in the bucket: y = 2 (f 2 f ) 1 R sin f0 i 02p

The angle f0, where the bucket begins, is where the water
level is tangent to the inner edge of the lower blade. Thus

KL l
R cos f = 2 or cos f = 2 (16)i 0 02p r

(This is assuming l < r; otherwise f0 = p.) The angle f1

where the bucket ends is where the water level hits the outer
edge of the upper blade for a third time. Thus

2p KL
R sin f 2 = 2 (f 2 f ) 1 R sin f0 1 1 0 i 0S DN 2p

2p
or sin f 2 = 2l(f 2 f ) 1 r sin f1 1 0 0S DN (17)

The angles denoted fL or fR determine the portion of the outer
cylinder in contact with the water. If the outer cylinder is an
open trough, then they determine the minimum angular bound-
aries of the trough needed to contain the buckets of water.
Both angles are determined by points of intersection of the
water level and the outer edge of the lower blade, so that they
are both solutions of the equation

KL
R sin f = 2 (f 2 f ) 1 R sin fo 0 i 02p

or sin f = 2l(f 2 f ) 1 r sin f0 0 (18)
FIG. 16. Profile and Cross-Sectional Views of Screw in Figs. 14 and 15
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For Vitruvius’s screw (r = 1/2, l = 3/16) these angles turn out
to f0 = 112.027, f1 = 441.967, fL = 162.687, and fR = 343.007.
Depending on the parameters of the screw, there are many
other possibilities as to how the water level can hit the four
sinusoidal curves and the inner and outer cylinders in Fig. 16.
One must be careful with the bookkeeping to make sure the
correct angles are chose in the correct ranges.

As seen in Fig. 15, each cross section of a bucket consists
of a portion of the cross section of a chute cut off by a straight
line representing the horizontal water level of the bucket in
that cross section. The cross section of a chute, in turn, consists
of a region bounded by two concentric circles and two rays.
Basic geometry can be used to find exact formulas for the
function gB(f), although the formulas are quite messy because
there are many ways that the horizontal water line can hit the
two circular boundaries and two straight-line boundaries of a
chute cross section.

Even though exact formulas for gB(f) for each f can be
generated, it is not possible to obtain an exact expression for
the integral in (15) that determines the volume ratio. This is
because the integral in (15) must be written as a sum of sub-
integrals, each for a different shape of the bucket cross section,
and the angles needed as limits for these subintegrals (such as
the angles f1, fL, and fR) cannot be expressed in closed form.
Consequently, a MatLab computer program was written to de-
termine the volume ratio numerically. This program imple-
mented Simpson’s Rule to evaluate the integral in (15) using
a blade-angle spacing of 27.
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APPENDIX III. NOTATION

The following symbols are used in this paper:

A0 = fraction of area of cross section of horizontal screw occu-
pied by water (dimensionless);

AB = area of water in cross section of one bucket (m2);
K = slope of screw (dimensionless);
L = total length of screw (m);
N = number of blades in screw (dimensionless);
Ri = radius of screw’s inner cylinder (m);
Ro = radius of screw’s outer cylinder (m);
VB = volume of one bucket of water (m3);
Vt = volume of water lifted in one turn of screw (m3);
x = position along axis of screw (m);
y = distance perpendicular to axis of screw (m);
a = angle of incline of spiral intersection of blade and outer

cylinder with respect to axis of screw (rad);
b = angle of incline of spiral intersection of blade and inner

cylinder with respect to axis of screw (rad);
u = angle of incline of screw (rad);
L = pitch (or period) of blade (m);
l = pitch ratio = KL/2pRo (dimensionless);
n = fraction of volume of one cycle of screw occupied by water

(volume ratio) (dimensionless);
r = radius ratio = Ri /Ro (dimensionless); and
f = blade angle = 2px/L (rad).

(Note: The optimal value of a parameter is denoted by an
asterisk; e.g., )*V .T




