1. Use Jordan forms to show that matrices with distinct eigenvalues are dense in the space of all matrices.

Answer: This result is equivalent to show that any matrix is the limit of a sequence of matrices with distinct eigenvalues.
Let A be any matrix, J be it's Jordan form, and S be such that $A=S J S^{-1}$. We shall construct a \tilde{J}_{m} such that \tilde{J} is close to J, but has distinct eigenvalues. To do this, let $\varepsilon=\min \left\{\min _{k \neq j}\left|J_{j j}-J_{k k}\right|, 1\right\}$, then if we define

$$
\tilde{J}_{m}=\left(\begin{array}{cccc}
J_{11}+\frac{\varepsilon}{m} & * & & 0 \\
& J_{22}+\frac{2 \varepsilon}{m} & * & \\
& & \ddots & \\
0 & & & J_{n n}+\frac{n \varepsilon}{m}
\end{array}\right)=J+\frac{\varepsilon}{m}\left(\begin{array}{cccc}
1 & & & 0 \\
& 2 & & \\
& & \ddots & \\
0 & & & n
\end{array}\right) .
$$

By the definition of $\varepsilon, \tilde{J}_{m}$ has distinct diagonal entries. Since \tilde{J}_{m} is triangular, this then gives that it has distinct eigenvalues.
Let $\tilde{A}_{m}=S \tilde{J}_{m} S^{-1} \rightarrow A$. Since \tilde{A}_{m} has the same eigenvalues of \tilde{J}_{m}, which are distinct, \tilde{A}_{m} has distinct eigenvalues. We also see that

$$
\tilde{A}_{m}-A=S\left(\tilde{J}_{m}-J\right) S^{-1} \rightarrow 0 \text { as } m \rightarrow \infty, \text { since } \tilde{J}_{m}-J \rightarrow 0 .
$$

Thus A is the limit of a sequence matrices with distinct eigenvalues. As A is general, we have proved the desired result.

2 . Let A be the matrix the complex 3×3 matrix

$$
A=\left(\begin{array}{ccc}
2 & 0 & 0 \\
a & 2 & 0 \\
b & c & -1
\end{array}\right) .
$$

Compute the Jordan form for A and show that A is similar to a diagonal matrix if and only if $a=0$.

Answer: First we see that

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{ccc}
2-\lambda & 0 & 0 \\
a & 2-\lambda & 0 \\
b & c & -1-\lambda
\end{array}\right)=-(2-\lambda)^{2}(1+\lambda),
$$

so the eigenvalues of A are -1 and 2 . We see that -1 has multiplicity 1 , so the Jordan block of that eigenvalue is $B_{2}=(1)$. The eigenvalue 2 has multiplicity 2 , so we must check $\operatorname{nullity}(A-2 I)$. We see that

$$
A-2 I=\left(\begin{array}{ccc}
0 & 0 & 0 \\
a & 0 & 0 \\
b & c & -3
\end{array}\right),
$$

so nullity $(A-2 I)=2$ if and only if $a=0$. Since nullity $(A-2 I)$ is the number of linearly independent genuine eigenvectors which is equal to the number of Jordan blocks, we have that the Jordan form of A is

$$
\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & -2
\end{array}\right) \text {, if } a=0 \text { and }\left(\begin{array}{ccc}
2 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & -1
\end{array}\right) \text { otherwise. }
$$

If $a \neq 0$, we know that A is similar to $\left(\begin{array}{ccc}2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1\end{array}\right)$, which is not similar to a diagonal matrix. If $a=0$, the Jordan form is diagonal. Thus A is similar to a diagonal matrix if and only if $a=0$.
3. Let $a_{0}, a_{1}, \ldots, a_{n}-1$ be complex numbers and let V be the space of all n times differentiable functions f on an interval of the real line, which satisfy the differential equation

$$
D^{n} f+a_{n-1} D^{n-1} f+\cdots+a_{1} D f+a_{0} f=0
$$

where D is the differential operator $d / d x$. Clearly V is invariant under D. What is the Jordan form for D on V ?

Answer:

(a) Let J be the Jordan form of D. Let $q_{j}=$ the number of Jordan blocks. We know that q_{j} is equal to the number of genuine eigenvectors of eigenvalue c_{j}, which is in turn equal to the nullity of $D-c_{j}$.
To find the nullity of $D-c_{j}$, suppose f is such that $D f-c_{j} f=0$, then f must be of the form $f(x)=A e^{c_{j} x}$. Thus the null space of $\left(D-c_{j}\right)$ is one dimensional, and so $d_{j}=1$. Thus the J is composed of blocks of the form

$$
B_{j}=\left(\begin{array}{ccc}
c_{j} & 1 & \\
& \ddots & 1 \\
& & c_{j}
\end{array}\right)
$$

with distinct c_{j} 's.
(b) To determine the size of these blocks, we define $p(s)=s^{n}+a_{n-1} s^{n-1}+\cdots+a_{0}$ and note that for all $f \in V$,

$$
p(D) f=D^{n} f+a_{n-1} D^{n-1} f+\cdots+a_{1} D f+a_{0} f=0 .
$$

Thus $p(D)=0$ and so by the definition of the minimal polynomial $m_{D}(s), m_{D}(s)$ must divide $p(s)$.
(c) If we factor p as $p(s)=\prod_{j=1}^{k}\left(s-c_{j}\right)^{r_{j}}$. Then, since roots of m_{D} are also roots of p, we see that we may write $m_{D}(s)=\prod_{j=1}^{k}\left(s-c_{j}\right)^{d_{j}}$, where $0 \leq d_{j} \leq r_{j}$.
From the theory of ODEs, we know that the solution space of $p(D) f=0$ has dimension equal to the degree of p, which is n. We also know that the solution space of $m_{D}(D) f=0$ has dimension equal to the degree of m_{D}. If the degree of m_{D} was less than n, there would exist an f such that $p(D) f=0$ but $m_{D}(D) f \neq 0$, which would contradict the fact that $m_{D}(D)=0$.
Thus $n=\operatorname{deg}\left(m_{D}\right)=\sum_{j=1}^{k} d_{j}$. The upper bound $d_{j} \leq r_{j}$ then gives that $d_{j}=r_{j}$ for all j and so $m_{D}=p$. Since we also know that the d_{j} 's, the multiplicity of the roots of the minimal polynomials, are the size of the largest Jordan blocks of each eigenvalue. Since we proved in part a that there is only 1 Jordan block of each eigenvalue, we thus have that

$$
J=\left(\begin{array}{ccc}
B_{1} & & \\
& \ddots & \\
& & B_{k}
\end{array}\right), \text { where } B_{j}=\left(\begin{array}{ccc}
c_{j} & 1 & \\
& \ddots & 1 \\
& & c_{j}
\end{array}\right) \text { is an } r_{j} \times r_{j} \text { matrix. }
$$

4. Let $X_{1} \subset X_{2} \subset \ldots \subset X_{k}$ be a tower of linear spaces. Show that

$$
\operatorname{dim}\left(X_{1}\right)+\operatorname{dim}\left(X_{2} / X_{1}\right)+\cdots+\operatorname{dim}\left(X_{k} / K_{k-1}\right)=\operatorname{dim} X_{k}
$$

Answer: We recall that for any two linear spaces X, Y such that $Y \subset X$, we have that

$$
\operatorname{dim}(Y)+\operatorname{dim}(X / Y)=\operatorname{dim}(X) \Rightarrow \operatorname{dim}(X / Y)=\operatorname{dim}(X)-\operatorname{dim}(Y)
$$

Applying this $k-1$ times, we have that

$$
\operatorname{dim}\left(X_{1}\right)+\sum_{j=2}^{k} \operatorname{dim}\left(X_{j} / X_{j-1}\right)=\operatorname{dim}\left(X_{1}\right)+\sum_{j=2}^{k}\left[\operatorname{dim}\left(X_{j}\right)-\operatorname{dim}\left(X_{j-1}\right)\right]=\operatorname{dim}\left(X_{k}\right) .
$$

