
Homework 1 Solutions MATH-GA.2111-001 Linear Algebra

1. Let X be the space of polynomials of degree < n, and let Y be the set of polynomials that
are zero at t1, . . . , tj , j < n, ti ∈ R. Determine dim(Y ) and dim(X/Y ).

Answer: Let t1, . . . , tk be the k distinct points out of t1, . . . , tj . For any y ∈ Y , the funda-

mental theorem of algebra tells us that we may write y(t) = g(t)
∏k

i=1(t − ti), where g is a
polynomial of degree < n− k. Since g is a polynomial, it can be written as

g(t) = a0 + a1t+ · · ·+ an−k−1t
n−k−1

This tells us that if we define yl = tl
∏k

i=1(t− ti), then any y ∈ Y may be written as a linear
combination of the yl’s.

y(t) =
n−k∑
l=1

alyl(t),

so the yl’s span Y . They may also be seen to be linearly independent by having different
growth rates as t → ∞, so {yl}n−kl=1 is a basis for y. Since this basis has n − k elements, we
know that dim(Y ) = n− k.

Since we know that dim(X) = n, Theorem 6 of Chapter 1 of Lax’s book tells us that

dim(X/Y ) = dim(X)− dim(Y ) = k.

2. In Theorem 7 of chapter 2 of Lax’s book, take the interval I to be [−1, 1], and n to be 3.
Choose the 3 points to be t1 = −a, t2 = 0, and t3 = a, a ∈ (0, 1].

(a) Determine the weights m1,m2, and m3 such that∫
I
p(t)dt = m1p(t1) +m2p(t2) +m3p(t3), (1)

holds for all polynomials of degree < 3.

Answer: Since both integration, and evaluation are linear operations, it is enough to
ensure that the weights are chosen to make the formula exact for some basis of the space
X = {p : p is a polynomial, deg(p) < 3}. For convenience, we choose the standard basis
1, t, and t2. (1) requires that

2 =

∫ 1

−1
1dt = m1 +m2 +m3 (2a)

0 =

∫ 1

−1
tdt = −m1a+m3a (2b)

2

3
=

∫ 1

−1
t2dt = m1a

2 +m3a
2 (2c)

For (2b) to be satisfied, we must have that m1 = m3. (2c), then gives that m1 = m3 =
1/(3a2). Plugging this into (2a), then gives us m2 = 2 − 2/(3a2). All together, we see
that

m1 =
1

3a2
,m2 = 2− 2

3a2
, and m3 =

1

3a2
.
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(b) Show that for a >
√

1/3, all weights are positive.

Answer: Clearly m1 and m3 are positive for any value of a 6= 0. For m2, note that

a >
√

1/3⇒ 1

a2
< 3⇒ 2

3a2
< 2⇒ 2− 2

3a2
> 0,

so m2 > 0, and all weights are positive.

(c) Show that for a >
√

3/5 (1) holds for all polynomials of degree < 6.

Answer: As in part a), we know that it is enough to check that (1) holds for the standard
basis 1, t, . . . , t5. If we choose

m1 =
5

9
,m2 = 2− 10

9
=

8

9
, and m3 =

5

9
,

then part a), gives that (1) holds for p(t) = 1, t, t2. We now check the others

−5a3

9
+ 0 +

5a3

9
= 0 =

∫ 1

−1
t3dt X

5a4

9
+

5a4

9
=

10

9

(
3

5

)2

=
2

5
=

∫ 1

−1
t4dt X

−5a5

9
+ 0 +

5a5

9
= 0 =

∫ 1

−1
t5dt. X

We see that (1) holds for all basis functions, and so we may conclude that it holds for
all polynomials of degree < 6.

It is good to note that, by moving to non-equispaced sampling points, we were able to
construct a far more accurate rule for numerical integration. The ideas here can be fairly
easily extended to hold for different domains with an arbitrary number of sample points.
For those that are interested, this method is called Guassian quadrature.

3. Let P2 be the linear space of all polynomials

p(x) = a0 + a1x+ a2x
2,

with real coefficients and degree ≤ 2. Let ξ1, ξ2, ξ3 be three distinct real numbers, and then
define

li = p(ξi), i = 1, 2, 3 (3)

(a) Show that l1, l2, l3 is a basis for P ′2.

Answer: First, we note that the li’s are evaluation operators, which are clearly linear
functionals. Second, we note that we have three linear functionals, and by Theorem 2
in Chapter 2 of Lax

dim(P ′2) = dim(P2) = 3,

so l1, l2, l3 form a basis iff they are linearly independent. To see that they are linearly
independent, suppose that

b1l1 + b2l2 + b3l3 = 0, b1, b2, b3 ∈ R
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If we take this functionals and operate on pi =
∏

j 6=i(x− ξj), then we find that

0 = (b1l1 + b2l2 + b3l3)(pi) = bi
∏
j 6=i

(ξi − ξj), i = 1, 2, 3.

Since the ξi’s are distinct, this gives that bi = 0 for all i, and the li’s are linearly
independent.

(b) i. Suppose that {e1, . . . , en} form a basis for a vector space V . Show there exists linear
functions {l1, . . . , ln} in V ′ defined by

li(ej) = δi,j =

{
1 if i = j

0 if i 6= j
. (4)

Show that {l1, . . . , ln} is a basis for V ′: it is called the dual basis.

Answer: Since {e1, . . . , en} is a basis for V , we know that for any v ∈ V , we may
write

v =

n∑
i=1

aiei.

We will then define the li’s on general v’s by

li(v) = ai. (5)

Clearly this satisfies the required definition of li. To see that it is a linear functional,
suppose

v =

n∑
i=1

aiei, u =

n∑
i=1

biei ∈ V

then

li(αv + βu) = li

 n∑
j=1

(αaj + βbj)ej

 = αai + βbi = αli(v) + βli(u),

as required. To see that {l1, . . . , ln} is a basis for V ′, it is enough to show that they
are linearly independent because dim(V ′) = n = |{l1, . . . , ln}|. To see the linear
independence, suppose that

n∑
i=1

aili = 0.

If we evaluate this equation on ej , we find that

0 =
n∑

i=1

aili(ej) =
n∑

i=1

aiδi,j = aj , j = 1, . . . , n.

Thus all the ai’s are zero. Thus the li’s are linearly independent and form a basis
for V ′.
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ii. Find the basis {e1, e2, e3} in P2 for which the l1, l2, l3 defined in (3) is the dual basis
in P ′2.

Answer: If we define

ei(x) =

∏
j 6=i(x− ξj)∏
j 6=i(ξi − ξj)

, i = 1, 2, 3, (6)

then we see that li(ej) = δi,j , as required. {e1, e2, e3} is clearly a basis because it
has the required number of elements and is linearly independent for the same reason
that the li’s are.

4. Let W1 and W2 be two subspaces of a vector space V such that H = W1 ∪ W2 is also a
subspace of V . Show that one of the subspaces Wi is contained in the other.

Answer: Suppose ∃w1 ∈W1 such that w1 6∈W2. Then, for all w2 ∈W2, we have that

w1 + w2 ∈ H = W1 ∪W2,

because H is a subspace. Thus either w1 + w2 ∈W1 or W2. If it is in W2, we have that

w1 = (w1 + w2) + (−w2) ∈W2

because W2 is a subspace, which is a contradiction. Thus it is in W1 and we know that

w2 = (w1 + w2) + (−w1) ∈W1.

This shows that if ∃w1 ∈ W1 but not in W2, then w2 ∈ W1 ∀w2 ∈ W2. Writing that another
way, we have that W1 6⊂W2 implies that W2 ⊂W1. Since the labelling of

5. (a) Prove that the only subspaces of R1 are R1 and the zero subspace.

Answer: If Y ⊂ R1 is a subspace of R1, then dim(Y ) ≤ dim(R1) = 1. If dim(Y ) = 0,
then it is not possible to find any set of linearly independent vectors, so Y = {0}. If
dim(Y ) = 1, then Y = R1, because any basis of Y must span the whole space.

(b) Prove that the only subspaces of R2 are R2, the zero subspace, or a scalar multiples of
some fixed vector.

Answer: If Y ⊂ R2 is a subspace of R2, then dim(Y ) ≤ dim(R2) = 2. If dim(Y ) = 0,
then again Y is the zero subspace. If dim(Y ) = dim(R2) = 2, then again Y must
be the whole space (R2). Finally, if dim(Y ) = 1, then by the definition of dimension,
Y = span{v}, for some vector v ∈ Y . The only linear combinations of a single vector,
are scalar multiples of the vector, so it must be that Y = {cv : c ∈ R}.

(c) Describe all the subspaces of R3.

Answer: If Y ⊂ R3 is a subspace of R3, then dim(Y ) ≤ dim(R3) = 3. If dim(Y ) = 0, then
Y is the zero subspace. If dim(Y ) = dim(R3) = 3, then Y = R3. If dim(Y ) = 1, then
again Y = {cv : c ∈ R}, for some v ∈ R3. Finally, if dim(Y ) = 2, then Y = span{u, v},
for some u, v ∈ R3. The set of linear combinations of two vectors forms a plane containing
the origin Y = {cu+ dv : c, d ∈ R}. Thus the subspaces of R3 are of the form

{0}, {cv : c ∈ R}, {cu+ dv : c, d ∈ R}, and R4.
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6. Let V be the set of real numbers. Regard V as a vector space over the field of rational
numbers, with the usual operations. Prove that the vector space is not finite dimensional.

Answer: There are two main ways to answer this question:

Cardinality approach: If a vector space V over the field of rationals is finite dimensional, then
it has a basis {e1, . . . , en} and may be written

V = {a1e1 + · · ·+ anen : a1, . . . , an ∈ Q}.

We may then uniquely identify any element v ∈ V with vector in Qn, and so we see that the
cardinality of V is the same as Qn, which is a countable set. Since R is an uncountable set,
it cannot be a finite dimensional vector space over Q.

Basis construction approach: Consider the set of vectors {1, π, . . . , πn}. If the rational num-
bers a0, . . . , an are such that

a0 + a1π + · · ·+ anπ
n = 0,

then we know that π is a root of the polynomial

a0 + a1x+ · · ·+ anx
n.

Since π is known to be a transcendental number, and this is a polynomial with rational
coefficients, it must be that a0 = · · · = an, and so {1, π, . . . , πn} is a set of linearly independent
vectors for any n ∈ N. Since it is possible to find a set of linearly independent vectors of any
size, it must be that V is infinite dimensional.
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