1. Show by Gaussian elimination that the only left null vectors of

$$M = \begin{pmatrix} 1 & 1 & 2 & 3\\ 1 & 2 & 3 & 1\\ 2 & 1 & 2 & 3\\ 3 & 4 & 6 & 2 \end{pmatrix}$$

are of the multiples of l = (1 - 2 - 1 1). Then use the fact that for a linear map T, $R_T^{\perp} = N_{T'}$ to conclude that the condition $0 = u_4 - u_3 - 2u_2 + u_1$ is necessary and sufficient to solve the system Mx = u.

Answer: To find the left null vectors of M, we perform Gaussian elimination on M^T .

$$\begin{pmatrix} 1 & 1 & 2 & 3 \\ 1 & 2 & 1 & 4 \\ 2 & 3 & 2 & 6 \\ 3 & 1 & 3 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 & 3 \\ 0 & 1 & -1 & 1 \\ 0 & 1 & -2 & 0 \\ 0 & -2 & -3 & -7 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 & 3 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & -5 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 & 3 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

We may now use back-substitution to find l. First we see $l_4 = t$ is a free variable. The next row tells us that $l_3 = -l_4 = -t$. Row 2 says $l_2 = l_3 - l_4 = 2t$. Row 1 tells us that $l_1 = -l_2 - 2l_3 - 3l_4 = t$. Altogether we have that l = t(1, -2, -1, 1), so $N_{T'} = \text{span}\{(1, -2, -1, 1)\}$. We know that $R_T^{\perp} = N_{T'} = \text{span}\{(1, -2, -1, 1)\}$, so

$$\exists x \text{ s.t. } Mx = u \Leftrightarrow u \in R_T \Leftrightarrow l(u) = 0 \ \forall l \in R_T^{\perp}$$
$$\Leftrightarrow t(u_1 - 2u_2 + -u_3 + u_4) = 0 \ \forall t \Leftrightarrow u_1 - 2u_2 + -u_3 + u_4 = 0.$$

i.e. Mx = u is solvable if and only if $u_1 - 2u_2 + -u_3 + u_4 = 0$.

2. Suppose $T \in \mathcal{L}(X)$, dim X = n and let $B: X \to \mathbb{R}^n$ be an isomorphism such that $B\alpha_i = e_i$, $i = 1, \ldots, n$ for some basis $\mathcal{B} = \{\alpha_1, \ldots, \alpha_n\}$ of X. Let $M = BTB^{-1} \in \mathcal{L}(\mathbb{R}^n)$ and let $M_{ij} = (Me_j)_i$ be the matrix associated with M as in Theorem 1 pg 32 (Lax). Show that $T\alpha_j = \sum_{i=1}^n M_{ij}\alpha_i, i = 1, \ldots, n$. Thus M_{ij} is the matrix for T in the basis \mathcal{B} .

Answer: We use linearity of B and our definitions to see that

$$T\alpha_j = B^{-1}MB\alpha_j = B^{-1}Me_j = B^{-1}\sum_{i=1}^n (Me_j)_i e_i = \sum_{i=1}^n M_{ij}\alpha_i$$

This is the definition of M being the matrix representation of T in the basis \mathcal{B} .

3. Let S be a linear operator in R^2 such that $S^2 = S$ (i.e. S is a projection). Show that either S = 0 or S = I or $S\alpha_j = \sum_{i=1}^2 A_{ij}\alpha_i$ j = 1, 2 for some basis (α_1, α_2) for \mathbb{R}^2 , where $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$.

Note: I understand this question was hard to read on the sheet, but the question only makes sense if the word after "S = I" is "or", and so the homework was marked accordingly.

Answer: Since $S \in \mathcal{L}(\mathbb{R}^2)$, we know that $\operatorname{rank}(S) = 0, 1, \text{ or } 2$. If $\operatorname{rank}(S) = 0$, then $R_S = \{0\}$, and so S = 0. If $\operatorname{rank}(S) = 2$, then $R_S = \mathbb{R}^2$. Thus $\forall y \in \mathbb{R}^2$ there is an x such that Sx = y. The fact that $S^2 = S$ tells us that $Sy = S^2x = Sx = y$, and so Sy = y for all $y \in \mathbb{R}^2$ and S = I.

If rank(S) = 1, then dim $N_S = \dim R_S = 1$ and so there exists $\alpha_1 \neq 0$ such that $R_S = \operatorname{span}\{\alpha_1\}$ and $\alpha_2 \neq 0$ such that $N_S = \operatorname{span}\{\alpha_2\}$. $S^2 = S$ tells us that if $S^2x = 0$ then Sx = 0. By question 6 of homework 2, we have that $R_S \cap N_S = \{0\}$. Thus $\{\alpha_1, \alpha_2\}$ is a linearly independent set of 2 vectors, and so a basis.

To find the matrix of S in the basis $\{\alpha_1, \alpha_2\}$, note that $\alpha_1 \in \mathbb{R}_S$ implies that there is a y so that $Sy = \alpha_1$, then $S\alpha_1 = S^2y = Sy = \alpha_1$. Now write $x = c_1\alpha_1 + c_2\alpha_2$, and so

$$Sx = c_1 S(\alpha_1) + c_2 S(\alpha_2) = c_1 \alpha_1.$$

Thus the matrix for S is the required A.

- 4. Let X be an *n*-dimensional vector space over a field K, and let $\mathcal{B}\{\alpha_1, \ldots, \alpha_n\}$ be a basis for X.
 - (a) Show that there is a unique linear operator T on X such that $T\alpha_j = \alpha_{j+1}, j = 1, \ldots, n 1$, and $T\alpha_n = 0$. What is the matrix A of T in the basis \mathcal{B} . i.e. $T\alpha_i = \sum_{i=1}^n A_{ij}\alpha_i$, $i = 1, \ldots, n$

Answer:

If
$$x = \sum_{i=1}^{n} c_i \alpha_i$$
, we will define $Tx = \sum_{i=1}^{n-1} c_i \alpha_{i+1}$. If $y = \sum_{i=1}^{n} d_i \alpha_i$, then

$$T(ax+by) = \sum_{i=1}^{n-1} (ac_i + bd_i)\alpha_{i+1} = a\sum_{i=1}^{n-1} c_i\alpha_{i+1} + b\sum_{i=1}^{n-1} d_i\alpha_{i+1} = aTx + bTy,$$

so T is a linear operator. Also $T\alpha_j = \alpha_{j+1}$, $j = 1, \ldots, n-1$, and $T\alpha_n = 0$.

Any linear transformation is uniquely determined by it's action on a basis, so T is unique. To see this explicitly, suppose S satisfies our desired property, then

$$T(\alpha_i) = \alpha_{i+1} = S(\alpha_i), i = 1, ..., n - 1, \text{ and } T(\alpha_n) = 0 = S(\alpha_n)$$

and so T(x) = S(x) for all $x \in X$, i.e. T = S, so T is unique. Clearly $T\alpha_j = \sum_{i=1}^n \delta_{i,j+1}\alpha_i$, and so the matrix is

$$A = \begin{pmatrix} 0 & & & 0 \\ 1 & 0 & & & \\ & 1 & 0 & & \\ & & \ddots & \ddots & \\ 0 & & & 1 & 0 \end{pmatrix}$$

(b) Prove that $T^n = 0$ and $T^{n-1} \neq 0$.

Answer: Repeated applications of T on the basis vectors clearly gives

$$T^k \alpha_i = T^{k-1} \alpha_{i+1} = \dots = \alpha_{i+k},$$

where $\alpha_j = 0$ if j > n. We thus see that $T^{n-1}\alpha_1 = \alpha_n \neq 0$, and so $T^{n-1} \neq 0$. We also see that $T^n\alpha_i = 0$ for all *i*. Thus T^n send all basis vectors to 0, and so $T^n = 0$.

(c) Let S be any linear operator on X such that $S^n = 0$, but $S^{n-1} \neq 0$. Prove that there is a basis \mathcal{B}' for X such that the matrix for S in the basis \mathcal{B}' is the matrix A from part a).

Answer: Since $S^{n-1} \neq 0$, there exists an α_1 such that $S^{n-1}\alpha_1 \neq 0$. If we let $\alpha_j = S^{j-1}\alpha_1$, I claim that $\mathcal{B}' = \{\alpha_1, \ldots, \alpha_n\}$ is a basis for X. Clearly it has the right number of elements, so we need only check linear independence.

Suppose c_1, \ldots, c_n are such that

$$c_1\alpha_1 + \cdots + c_n S^{n-1}\alpha_1 = 0$$

then applying S^{n-1} to both sides gives

$$c_1 S^{n-1} \alpha_1 + S^n (\alpha_1 + S \alpha_1 + \dots + S^{n-2} \alpha_1) = 0.$$

By the definition of α_1 , and the fact that $S^n = 0$, this tells us that $c_1 = 0$. We repeat this process by multiplying by S^{n-j} to show that all of the c_j 's are zero and so \mathcal{B}' is a set of *n* linearly independent vectors, and so a basis for *X*.

This basis also clearly satisfies the property that

$$S\alpha_{j} = S^{j}\alpha_{j} = \alpha_{j+1}, j = 1, \dots, n-1, \text{ and } S\alpha_{n} = S^{n}\alpha_{1} = 0\alpha_{1} = 0.$$

Thus S satisfies the same properties that defined T in part a), and so has the same matrix representation

(d) Prove that M and N are $n \times n$ matrices over K such that $M^n = N^n = 0$ but $M^{n-1} \neq 0$ and $N^{n-1} \neq 0$, then M and N are similar.

Answer: By part c), there exists bases \mathcal{B}_1 and \mathcal{B}_2 such that writing M and N in those respective bases gives the same matrix representation A. Representing these change of basis operations by the matrices P_1 and P_2 , we see that

$$P_1 M P_1^{-1} = A = P_2 N P_2^{-1}$$

$$\Rightarrow M = P_1^{-1} P_2 N P_2^{-1} P_1 = (P_1^{-1} P_2) N (P_1^{-1} P_2)^{-1},$$

and so M and N are similar.

- 5. Let W_1 and W_2 be subspaces of a finite-dimensional vector space X
 - (a) Prove that $(W_1 + W_2)^{\perp} = W_1^{\perp} \cap W_2^{\perp}$.

Answer: Let $l \in (W_1 + W_2)^{\perp}$, then for all $w_1 \in W_1$ and $w_2 \in W_2$, $l(w_1 + w_2) = 0$. In particular, choosing $w_2 = 0$ (allowed since W_2 is a subspace) gives that $l(w_1) = 0$ for all $w_1 \in W_1$, so $l \in W_1^{\perp}$. Choosing $w_1 = 0$ similarly shows that $l \in W_2^{\perp}$. Thus $l \in W_1^{\perp} \cap W_2^{\perp}$. Since this is true for all $l \in (W_1 + W_2)^{\perp}$, we have shown that $(W_1 + W_2)^{\perp} \subset W_1^{\perp} \cap W_2^{\perp}$. Now suppose $l \in W_1^{\perp} \cap W_2^{\perp}$. Then for all $w_1 \in W_1$ and $w_2 \in W_2$, $l(w_1) + l(w_2) = 0$. Using linearity, we see that

$$l(w_1 + w_2) = l(w_1) + l(w_2) = 0,$$

so $l \in (W_1 + W_2)^{\perp}$. Since this is true for all $l \in W_1^{\perp} \cap W_2^{\perp}$, we have that $W_1^{\perp} \cap W_2^{\perp} \subset (W_1 + W_2)^{\perp}$.

Since we have shown containment in both directions, we have the desired equality.

(b) Prove that $(W_1 \cap W_2)^{\perp} = W_1^{\perp} + W_2^{\perp}$.

Answer: If we let $Z_1 = W_1^{\perp}$ and $Z_2 = W_2^{\perp}$, then part a) tells us that

$$(Z_1 + Z_2)^{\perp} = Z_1^{\perp} \cap Z_2^{\perp}$$

$$\Rightarrow (W_1^{\perp} + W_2^{\perp})^{\perp} = (W_1^{\perp})^{\perp} \cap (W_2^{\perp})^{\perp}.$$

Using the fact that for any subspace $Y,\,(Y^{\perp})^{\perp}=Y$, we have that

$$(W_1^{\perp} + W_2^{\perp})^{\perp} = W_1 \cap W_2$$

$$\Rightarrow W_1^{\perp} + W_2^{\perp} = (W_1 \cap W_2)^{\perp}.$$