
Homework 5 Solutions MATH-GA.2111-001 Linear Algebra

1. Let X be the linear space of lower tirangular matrixes. Show that the space of symmetric
matrices S is (isomorphic to) the dual space X ′ of X.

Answer: It is possible to show that all finite dimensional vector spaces of the same dimension
n are isomorphic through showing they are all isomorphic to Rn. To apply it to this problem
we may construct a basis {Ei,j} for X (e.g. (Ei,j)k,l = δk,iδl,j) and then note that {Ei,j+ETi,j}
is a basis for S, and so they have the same dimension. I will not pursue this approach because
the hint indicates that we are looking for an explicit, natural isomorphism between S and X ′.

We claim that this isomorphism is the map l : S → X ′, where lA(E) = tr[AE]. Clearly lA
is linear for any A ∈ S by the linearity of the trace (so lA ∈ X ′ ∀A ∈ S), and l is a linear
map by the linearity of the trace. We also know that dimS = dimX = dimX ′, so l is an
isomorphism if and only if it is one-to-one.

To see this, we note that if we let Ei,j ∈ X be as defined above, then lA(Ei,j) = Ai,j , so
if A,A′ ∈ S are such that lA = lA′ , then Ai,j = A′i,j for every j ≤ i. By the fact that A
and A′ are symmetric, we have that A = A′, thus l is one-to-one, and so we have found our
isomorphism.

Note: This is the natural isomorphism in this situation because it is defined through the
usual inner product defined on matrix spaces 〈A,B〉 = tr[ATB] =

∑
i,j Ai,jBi,j .

2. Show that the equation [A,B] = I has no solutions A,B, in the space of n× n matrices.

Answer: We know that tr[AB] = tr[BA], thus the trace of any commutator must be zero:
tr[A,B] = tr[AB]− tr[BA] = 0. Since tr[I] = n 6= 0, we have that there are no A and B such
that [A,B] = I.

3. How many multiplications does it take to evauate detA by using Guassian elimination to
bring it into upper triangular form? How many multiplications does it take to evaluate detA
by the formula

detA =
∑
p∈Sn

σ(p)ap1,1 · · · apn,n?

Answer: At each step of Guassian elimination, we must perform one multiplication for every
entry that is modified. At the ith step, we must modify n − i rows and n − i + 1 entries in
each of these rows, so the number of multiplications to perform the Gaussian elimination is

n−1∑
i=1

(n− i)(n− i+ 1) =
n−1∑
i=1

i(i+ 1) =
n−1∑
i=1

i2 + i =
1

6
(n− 1)n(2n− 1) +

1

2
(n− 1)n

=
1

3
n3 − 1

2
n2 +

n

6
+

1

2
n2 − n

2
=

1

3
n3 − 1

3
n.

Once the matrix is in upper triangular form, it takes n − 1 multiplications to compute the
determinant, so the total number of multiplications is n3

3 + 2n
3 − 1.

Computing detA through the Leibniz formula requires n multiplications (or n− 1 depending
on how you do it) for each term in the sum. Since we are summing over all permutations of
n numbers, and we know that there are n! distinct permutations of n elements, we have that
this method requires n(n!) multiplications, which is much larger than the above approach.
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4. Show that the n× n matrix

A =


0 1 · · · 1
1 0 1 1
...

. . .
...

1 · · · 1 0


has a complete set of eigenvectors. What are it’s eigenvalues? Compute detA.

Answer: To find the eigenvalues of A, we must compute

det(λI −A) = det


λ −1 · · · −1
−1 λ −1 −1
...

. . .
...

−1 · · · −1 λ

 .

Using the formula we derived on the last assignment for this kind of determinant gives that
det(λI − A) = (λ + 1)n−1(λ − (n − 1)). This formula tells us a few things. First, we clearly
have that if λ = 0, then detA = (−1)n det(−A) = (−1)n−1(n− 1).

Next, we see that det(λI − A) = 0 if λ = −1 or n − 1, so the eigenvalues of −1 and n − 1.
The fact that n − 1 is an eigenvalue tells us that it has at least one eigenvector, and that
eigenvector will be linearly independent from the eigenvectors of eigenvalue −1. Since the
multiplicity of the root is 1, we also know that there can only be one eigenvector of eigenvalue
n− 1.

For λ = −1, we see that

λI −A =

−1 · · · −1
...

...
−1 · · · −1

 ,

is a matrix with all rows being the same, so rank(−I−A) = 1. The rank nullity theorem then
tells us that null(−I −A) = n− 1, so there exists a set of n− 1 linearly independent vectors
v2, . . . vn, such that Avj = −vj for j = 2, . . . n. Since, these will be linearly independent from
v1, we have that {v1, . . . , vn} will be a basis of eigenvectors.

Note: At this point we have completely answered the question. Sometimes all we need to
is that there exists a basis of eigenvectors (this will tell us that our matrix is similar to a
diagonal matrix, which tells us a lot about A). While it is possible to find an explicit basis of
eigenvectors, it can be quite tedious, making the above approach more favorable in the (fairly
common) case that we don’t actually need the eigenvectors.

For illustrative purposes, I shall compute the eigenvectors here. For λ = n−1, we are looking
for vectors such that 

n− 1 −1 · · · −1
−1 n− 1 −1 −1
...

. . .
...

−1 · · · −1 n− 1


x1...
xn

 = 0.

Writing this another way,
∑

i 6=j xi = (n − 1)xj for j = 1, . . . , n. This is clearly satisfied by
taking xj = c for all j, for some constant c. Since we know that there is only one linearly

Page 2 of 6



Homework 5 Solutions MATH-GA.2111-001 Linear Algebra

independent eigenvector for this eigenvalue, we have that that these are the only solution to
this equation and we may take v1 = (1, . . . , 1)T is our eigenvector.

For λ = −1. We are looking for vectors such that

−1 · · · −1
...

...
−1 · · · −1


x1...
xn

 = 0.

⇒ x1 + · · ·+ xn = 0.

The set of vectors in this hyperplane is n− 1-dimensional. A convenient basis is

v2 =


1
−1
0
...
0

 , v3 =



1
0
−1
0
...
0


, and vn =


1
0
...
0
−1

 ,

though there are many other choice of bases.

5. A Cauchy matrix is a matrix with entries

aij =
1

xi − yj
,

where x and y are vectors with now shared elements and no repeated elements. Show that,
if x, y ∈ Rn, then

detA =

∏n
j=2

∏i−1
j=1(xi − xj)(yj − yi)∏n

i=1

∏n
j=1(xi − yi)

.

Answer: As with most of these kinds of problems, there are two main ways to do this, a
polynomial-based approach, or a Guassian elimination-based approach.

Polynomial-based: Let

P (x1, . . . , xn; y1, . . . , yn) =

n∏
i=1

n∏
j=1

(xi − yj) detA

= det


∏n

j=1(x1−yj)
x1−y1 · · ·

∏n
j=1(x1−yj)
x1−yn

...
...∏n

j=1(xn−yj)
xn−y1 · · ·

∏n
j=1(xn−yj)
xn−yn

 , by multilinearity

= det


∏
j 6=1(x1 − yj) · · ·

∏
j 6=n(x1 − yj)

...
...∏

j 6=1(xn − yj) · · ·
∏
j 6=n(xn − yj)


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Written in this form, we can see that P is a polynomial of {xi} and {yi}. The Leibniz
formula tells us that it will be a polynomial of degree at most n(n− 1). We see that P must
zero if xi = xj or yi = yj , because then A has two equal rows/columns, which will imply

that detA = 0. Thus P = Q(x1, . . . , xn; y1, . . . , yn)
∏n
j=2

∏i−1
j=1(xi − xj)(yi − yj), for some

polynomial Q. Counting degrees tells us that Q is a constant.

To find the value of the constant Q we may plug in a specific choice of x and y. One nice
choice is xi = 1

2 + it and yj = −1
2 + jt. Then Aij = 1

1+(i−j)t . As t→∞, A will approach the

identity, and so detA→ 1. Plugging these values into our formula for P tells us that

Q = lim
t→∞

∏n
i=1

∏n
j=1(xi − yj) detA∏n

j=2

∏i−1
j=1(xi − xj)(yi − yj)

= lim
t→∞

∏n
i=1

∏n
j=1(1 + (i− j)t)∏n

j=2

∏i−1
j=1(i− j)2t2

= lim
t→∞

∏
i 6=j(i− j)∏n

j=2

∏i−1
j=1(i− j)2

tn
2−n

tn2−n

=

∏n
j=2

∏i−1
j=1

(
−(i− j)2

)∏n
j=2

∏i−1
j=1(i− j)2

= (−1)n
2−n.

If we now isolate detA from P , we have that

detA =
(−1)n

2−n∏n
j=2

∏i−1
j=1(xi − xj)(yi − yj)∏n

i=1

∏n
j=1(xi − yj)

=

∏n
j=2

∏i−1
j=1(xi − xj)(yj − yi)∏n

i=1

∏n
j=1(xi − yj)

.
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Guassian elimination-based:

detA = det


1

x1−y1 · · · 1
x1−yn

...
...

1
xn−y1 · · · 1

xn−yn



=
n∏
i=1

1

xi − y1
det

1 x1−y1
x1−y2 · · · x1−y1

x1−yn
...

...
...

1 xn−y1
xn−y2 · · · xn−y1

xn−yn



=
n∏
i=1

1

xi − y1
det


c2−c1 cn−c1

1 y2−y1
x1−y2 · · · yn−y1

x1−yn
...

...
...

1 y2−y1
xn−y2 · · · yn−y1

xn−yn



=

n∏
i=1

1

xi − y1

n∏
j=2

(yj − y1) det

1 1
x1−y2 · · · 1

x1−yn
...

...
...

1 1
xn−y2 · · · 1

xn−yn



=
n∏
i=1

1

xi − y1

n∏
j=2

(yj − y1) det


1 1

x1−y2 · · · 1
x1−yn

r2−r1 0 x1−xn
(x2−y2)(x1−y2) · · · x1−x2

(x2−yn)(x1−yn)
...

...
...

rn−r1 0 x1−xn
(xn−y2)(x1−y2) · · ·

x1−xn
(xn−yn)(x1−yn)



=
n∏
i=1

1

xi − y1

n∏
j=2

(yj − y1)
n∏
j=2

(x1 − xj)
n∏
i=1

1

x1 − yj
det


c2(x1−y2) cn(x1−yn)

1 1 · · · 1
r2/(x2−1) 0 1

x2−y2 · · · 1
x2−yn

...
...

...
r2/(xn−1) 0 1

xn−y2 · · · 1
xn−yn



=

∏n
j=2(y1 − yj)(xj − x1)∏n
i=1(xi − y1)(x1 − yj)

det


1

x2−y2 · · · 1
x2−yn

...
...

1
xn−y2 · · · 1

xn−yn


... inductively applying the same argument gives

=

∏n
j=2

∏i−1
j=1(xi − xj)(yj − yi)∏n

i=1

∏n
j=1(xi − yj)

.

6. Consider the n× n matrix

A =


a1 a2 · · · an
an a1 · · · an−1
...
a2 a3 · · · a1

 .

Show that the eigenvalues of A are the form

λk+1 = a1ω
0
k + · · ·+ anω

n−1
k , 0 ≤ k ≤ n− 1,
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where ωk = e2πik/n.

Answer: We note that ωnk = e2πik = 1, so
a1 a2 · · · an
an a1 · · · an−1
...
a2 a3 · · · a1


 ω0

k
...

ωn−1k

 =


a1ω

0
k + · · ·+ anω

n−1
k

a1ω
1
k + · · ·+ anω

n
k

...

a1ω
n−1
k + · · ·+ anω

2n−2
k

 = (a1ω
0
k + · · ·+ anω

n−1
k )

 ω0
k
...

ωn−1k

 .

Thus vk = (1, . . . , ωn−1k ) is an eigenvector with eigenvalue λk+1 = a1ω
0
k + · · · + anω

n−1
k for

every k. These are all of the eigenvalues because we have found n eigenvectors. If a1, . . . , an
are all different, then the eigenvalues will all be distinct, and so the the eigenvectors will be
linearly independent. Since the eigenvectors are independent of a1, . . . , an, we have found n
linearly independent eigenvectors, and so have all of the eigenvalues, even in the case that A
is degenerate.

We may also show that the eigenvectors are linearly independent explicitly by taking the dot
product of any pair of eigenvectors

〈vk, vl〉 =

n∑
j=1

e2πi
k−l
n .

If k 6= l, then we are summing n distinct nth roots of unity, which gives zero. (There is a
very nice geometric proof of this fact that you can look up if you have not seen it already.)
Thus if we assemble the eigenvectors into a matrix

U =

 1 · · · 1
...

...

ωn−11 · · · ωn−1n

 ,

we have that U∗U = nI. Thus detU 6= 0, and so the eigenvectors are linearly independent.
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