
Homework 6 Solutions MATH-GA.2111-001 Linear Algebra

1. Let A be a real matrix with distinct eigenvalues λ1, . . . , λn, which are real and positive. How
many real matrices B satisfy the matrix equation A = B2.

Answer: Any square matrix is similar to an upper triangular matrix J (for example its Jordan
form). Then

A = B2 = PJP−1PJP−1 = PJ2P−1,

so A is similar to J2.

By question 4 of homework 4, we know that det(λI−J) =
∏n

k=1(λ−Jk,k), so the eigenvalues
of B are µk = Jk,k. The eigenvalues of A are λk = J2

k,k, because the square of an upper
triangular matrix is an upper triangular matrix with the diagonal entries squared. Thus each
eigenvalue of B must be the square root of a distinct eigenvalue of A.

We thus have that B has distinct eigenvalues, and hence a basis of genuine eigenvectors
{v1, . . . , vn}. Also, since

Avk = B(Bvk) = B(µkvk) = µ2kvk = λkvk,

these eigenvectors must also be eigenvectors of A. Thus the only freedom in the choice of B
is the freedom to choose the sign of the eigenvalue for each vk. Since there are n vk’s we see
that there are 2n possible B’s.

Note: An alternative proof of this fact is to note that since A has distinct eigenvalues, and
so Rn may be decomposed into a sum of one-dimensional eigenspaces of A. You can then
prove that B maps the eigenspaces into themselves, and use this to determine B up to signs,
and then count the number of signs. This proof has the advantage of giving more intuition
about the behaviour of these matrices, but I find proof presented above to be cleaner.

2. A matrix A is said to be monotone if for x = (x1, . . . , xn)T , Ax ≥ 0 (i.e. each element of Ax
is ≥ 0) implies x ≥ 0.

(a) Show that A is invertible.

Answer: Suppose Ax = 0 ≥ 0, then x ≥ 0. By linearity, we also have that
A(−x) = 0 ≥ 0, so −x ≥ 0. Thus x = 0. We thus have that A has a only a triv-
ial nullspace. Since A is square, this implies that it is invertible.

(b) Show that A is monotone if and only if A−1 exists and all its entries are non-negative.

Answer: First suppose A is monotone. Then A−1 exists by part a). Also note that if ãk
is the kth column of A−1, then

AA−1 = I ⇒ Aãk = ek ≥ 0,

where ek is the kth standard basis vector of Rn, which has non-negative entries. The
monotonicity of A then gives that ãk ≥ 0. Thus each column of A−1 has non-negative
entries, and so we are done.

We now suppose that A−1 exists and all its entries are non-negative. Since A−1 is
invertible, we have that the ãk’s form a basis.

Ax =

b1...
bn

⇒ x = A−1

b1...
bn

⇒ x =
n∑

k=1

bkãk.
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Since each element of ãk is non-negative, we have that bk ≥ 0 for all k implies that x ≥ 0.
This is the definition of A being monotone.

3. Let A and B be rectangular matrices of size n ×m and m × n respectively. Prove that the
non-zero eigenvalues of AB and BA are the same. Express the corresponding eigenvectors of
AB in terms of those of BA. Show that if λ+AB is invertible for some λ 6= 0, then

λ

λ+AB
+A

1

λ+BA
B = I.

Answer: Let v be an eigenvector of BA with eigenvalue λ 6= 0, then

(AB)Av = A(BAv) = λAv.

Since λ 6= 0, this tells us that Av is an eigenvector of AB with eigenvalue of λ. Thus all
non-zero eigenvalues of BA are also eigenvalues of AB.

By switching the roles of A and B above, we may also see that non-zero eigenvalues of AB
are also eigenvalues of BA.

Now suppose that λ+AB is invertible for λ 6= 0 (and so λ+BA is invertible, by the above)

Note that (λ+AB)A = λA+ABA = A(λ+BA), so (λ+AB)A(λ+BA)−1 = A. Thus

λ+ (λ+AB)A(λ+BA)−1B = λ+AB

⇒ (λ+AB)−1λ+ (λ+AB)−1(λ+AB)A(λ+BA)−1B = I

⇒ λ

λ+AB
+A

1

λ+BA
B = I.

4. Let C be an n× n matrix.

(a) Show that trC = 0 if and only if C = SDS−1 for some invertible S and some matrix D
with all diagonal entries equal to 0.

Answer: First note that if C = SDS−1, for such a D, then

trC = tr[SDS−1] = tr[S−1SD] = trD =

n∑
i=1

Di,i = 0.

We now use induction to prove the other direction. Clearly if n = 1 and trC = 0, then
C = 0, so the result holds. Now suppose that the result holds for any k < n.

We claim that C is similar to a matrix of the form

(
0 bT

a C1

)
. If we accept this claim,

then the induction hypothesis says that C1 is similar to a matrix D1 with zeros on the
diagonal, since trC1 = trC = 0. We may then the last n− 1 vectors in the basis that C
is written in to write

P−1CP =

(
0 b̃T

ã D1

)
,

which is a matrix with only zeros on the diagonal.

Proof of claim: Since trC = 0, we either have that C = 0 (and so we are done) or
C 6= λI for any λ (since then trC = nλ 6= 0). If C 6= 0, then there exists a v1 ∈ Rn such
that v2 = Cv1 6= λv1 for any λ. We may then choose v3, . . . , vn to complete a basis for
Rn. If we write C in this basis then C will have a 0 in the top left corner because Cv1
has no component in the v1 direction.
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(b) Show that trC = 0 if and only if C = AB −BA for some n× n matrices A and B.

Answer: If C = AB −BA, the trC = trAB − trBA = 0.

To prove the other direction, let A be some diagonal matrix with the Aj,j ’s all distinct.
Then asking C = AB −BA is the same as asking that

Ci,j = Ai,iBi,j −Bi,jAj,j , ∀i, j

⇒ Bi,j =
Ci,j

Ai,i −Aj,j
, ∀i, j

which is well defined, so we have found our A and B.

Note: It is also possible to prove this induction. This uses the claim from part a) and

the fact that if

(
0 bT

a C1

)
= ÃB̃ − B̃Ã, then

C = PÃP−1PB̃P−1 − PB̃P−1PÃP−1 = AB −BA,

so C is also commutator of two square matrices.

5. Show that if A is a k × k matrix with complex entries and An = I for some n > 0, then A
has a basis of eigenvectors.

Answer: There are two ways to prove this, by proving that A has no eigenvectors that are
generalized and not genuine, or by using the minimal polynomial of A.

Eigenvector approach: Suppose that A has at least one eigenvector that is generalized
and not genuine, then A has a Jordan chain of size at least 2, i.e. there exists a v such that
v1 = (A− λI)v 6= 0, but (A− λI)2v = 0. Note that v and v1 are linearly independent. Then,

Av = λv + v1

⇒ A2v = λ(λv + v1) + λv1
...

Anv = λnv + nλn−1v1. (1)

Since An = I, we have that (1 − λn)v = nλn−1v1. Since v and v1 are linearly independent,
both sides are zero. Thus λn = 1 and λn−1 = 0, which is a contradiction.

Note: It is not true that any eigenvector that is generalized and not genuine satisfies

(1). As an example take the matrix A =

λ 1 0
0 λ 1
0 0 λ

. Then Ae3 = λe3 + e2, and

A2e3 = λ2e3 + 2λe2 + e1, which is not the same behaviour as we used in the proof.

Minimal polynomial approach: If we define p(x) = xn − 1, then we have that p(A) = 0.
Note that this does not imply that p is the characteristic polynomial of A, even
if it had the right degree. , p(x) = xn− 1 =

∏n
k=1(x−ωk), where ωk are the nth roots of

1. We see that each term only appears once, so all roots of p have multiplicity 1.

It is a fact that p(A) = 0 implies that the minimal polynomial of A must divide p. Since the
roots of the minimal polynomial are eigenvalues of A, we have that all of the eigenvalues of
A must be nth roots of 1. More importantly, we have that the multiplicity of every root of
the minimal polynomial has multiplicity 1, which tells us that the Jordan normal form of A
has only Jordan blocks of size 1. Thus A is diagonalizable and has a basis of eigenvectors.
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6. A square matrix S is stochastic if all its elements are non-negative and the sum of the elements
in each column is 1.

i.e.
n∑

i=1

Si,j = 1, 1 ≤ j ≤ n.

Show that

(a) λ = 1 is an eigenvalue of S.

Answer: Note that

ST

1
...
1

 =


∑n

i=1 Si,1
...∑n

i=1 Si,n

 =

1
...
1

 ,

so 1 is an eigenvalue of ST . Since det(S − I) = det(ST − I) = 0, we also have that 1 is
an eigenvalue of S.

(b) All eigenvalues λi of S lie in the closed unit disk. i.e. |λi| ≤ 1 for all i.

Answer: We again note that all of the eigenvalues of S are also eigenvalues of ST . Now
suppose that v is an eigenvector of ST . Then

|λ||vi| = |λvi| =

∣∣∣∣∣
n∑

i=1

Si,jvj

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑
i=1

Si,j

∣∣∣∣∣ max
1≤j≤n

|vj | = max
1≤j≤n

|vj |.

Choosing i such that |vi| = max1≤j≤n |vj | gives that |λ| ≤ 1.
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