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Abstract 

We address (i) the onset of spatiotemporal chaos (STC) induced by the hyperbolic structure in a weakly perturbed 
nonlinear Schrijdinger equation, and (ii) its effective stochastic dynamics (ESD). We obtain the following new results: 
( 1) a very small number (two for our system) of linearly unstable modes is sufficient to trigger the onset of STC as 
characterized by an exponential decay in space of the mutual information; (2) the construction of the ESD needs only 
remporal chaos, in contrast to the requirement of full STC as usually believed. @ 1999 Elsevier Science B.V. 
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Chaos in deterministic finite-dimensional dynam- 

ical systems is a well-understood subject. However, 
most systems in physics and nature are described 
by partial differential equations (PDEs), which are 

infinite-dimensional dynamical systems. The simul- 
taneous presence of temporal and spatial chaos in 
PDE is an essential component to fundamental lim- 
its for prediction in nature. Here by spatiotemporal 
chaos (STC) we mean temporally chaotic dynamics 
together with long range spatial statistical indepen- 
dence. Our focus will be the disappearance of co- 

herence in space, i.e., the onset of spatial chaos, in 
a spatially extended dynamics whose time dynamics 
is chaotic as signified by positive Lyapunov expo- 
nents (sensitive dependence on initial conditions), or 
homoclinic tangles, etc. STC has posed a major con- 
ceptual and theoretical challenge in modern physics 
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and mathematics [ 1,2]. There is a dearth of analyti- 
cally tractable STC models [ 31. Coupled map lattices 
have facilitated our understanding of many aspects 
of STC by drawing from the great reservoir of the 

knowledge about the original uncoupled maps [ 21. In 
contrast, the understanding of STC for PDE has been 
limited and mainly concentrated on a few systems 
such as the complex Ginzburg-Landau equation and 
the Kuramoto-Sivashinsky (KS) equation [ 4,5 1. On 
the other hand, spatially localized coherent structures 
induced by modulational instability have provided an 

important theoretical framework for studying complex 
dynamics in many fields, e.g., hydrodynamics, plasma 
physics, nonlinear optics, biophysics and condensed 
matter physics. In this regard, completely integrable 
PDEs possessing spatially coherent soliton solutions 
represent the most idealized framework. As is well 
known, a controlled weak breaking of integrability has 
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led to surprisingly rich dynamics, while simultane- 
ously allowing the utilization of analytical tools from 
soliton mathematics to depict underlying structures. 
This class of problems includes perturbed nonlinear 
SchrGdinger equations (NLS) and perturbed sine- 

Gordon equations, where the existence and natures 
of remporully chaotic evolution of spatially local- 

ized structures have been firmly established and have 
been linked to linear instabilities in integrable soliton 

dynamics [ 61. The underlying hyperbolic structures 
described by homoclinic orbits of the full PDEs are 

the sources of sensitivity which can engender chaotic 

responses in a perturbed dynamics and are the origin 
of the chaotic behavior observed in many systems, 

including conservative lattice dynamics [ 71. Thus, a 
natural and important question arises, i.e., whether 

these hyperbolic structures can give rise to the phe- 

nomenon of STC [8]. In addressing this, we stress 

the importance of using mutual information (MI) 
in quantifying spatial chaos as it captures stronger 

statistical independence than two-point correlations 
(since a vanishing MI is a necessary and sufficient 
condition for statistical independence). 

A second important issue in the statistical physics 
of these temporally and/or spatially chaotic systems 
is whether they admit effective stochastic models for 
long wavelength dynamics. Recently, this issue has 
received renewed interest, particularly in the connec- 
tion between the Burgers-KPZ universality class and 
the hydrodynamic limit of the KS system [5,9]. We 

note that various extensions of the concepts of ther- 
modynamics to nonequilibrium have been attempted 

for systems which exhibit turbulence or STC [ lo]. 

To understand the thermodynamics of NLS, a statis- 
tical mechanical formalism was extended to construct 
a Gibbs measure [ 111. Here we will take an effec- 

tive stochastic dynamics (ESD) approach, which is an 
extension to a dissipative dynamics of the Zwanzig- 
Mori projection formalism for a Hamiltonian system 
in thermal equilibrium [ 121. A similar procedure has 
been used for the KS model in the STC regime, re- 

sulting in the noisy Burgers equation as the effective 
long wavelength dynamics [5]. We address an im- 
portant question in this formalism, viz., what aspect 
of chaoticity is required to achieve a successful ESD 
construction: Is STC necessary or is temporal chaos 
sufficient to construct a coarse-grained dynamics? 

In this Letter, we focus on the issue of STC in 

a weakly perturbed NLS and its ramification for the 

ESD. We study the relationship between the number 
of linearly unstable modes (LUM) and the onset of 
STC. Surprisingly, we find that (i) contrary to the im- 
plied belief that a large number of LUMs are required 

for the onset of STC [ 1,3-5,101 a very small number 

(namely, &VO for our system) of LUMs is sufficient 
to trigger the onset of STC, while the evolution of 
the system with only one LUM exhibits only tempo- 

ral chaos; (ii) The coarse-grained dynamics for NLS 
requires only temporal chaos, in contrast to KS for 

which the STC is believed to play a significant role 

for the validity of ESD [ 51. 
The dynamics we study is the driven, damped NLS 

i*, + GXX + 2lf/I’+ = -icr$ + rei(w’+y), (1) 

with periodic boundary conditions $(x + f,) = G(x) . 

L is the system length. w and y are the driving fre- 

quency and phase, respectively. Near-integrability re- 
quires the damping LY and the driving strength r to be 

small. We note that for the one LUM case the follow- 
ing route to chaos has been verified numerically and 
analytically [ 61. For a fixed small cy, increasing the 

bifurcation parameter r of the driving, the long time 

dynamics undergoes a space-dependent quasi-periodic 
route to temporal chaos, changing from regular pat- 

terns in both space and time to regular spatial patterns 
that evolve chaotically in time. The solution consists 
of irregular jumps of a quasi-soliton by half system 

length ( i L-jumps) ’ . The temporal chaos has been 
confirmed by a broad-band power spectrum, positive 

Lyapunov exponents, scattered PoincarC sections, frac- 

tional Lyapunov dimensions, etc. [ 61. An example of 
this spatially regular, temporally chaotic evolution is 

shown in Fig. la, where we start with an initial con- 
dition which contains only one LUM. This kind of 
initial conditions can be easily obtained by studying 

the linearized stability of, say, a spatially independent 
solution: +!r( x, t) = A exp(2ilA12t). This solution has 
LUMs with the growth rate A = *k,/w for 

Ikl < 2lAI, k = 2n-m/L. For a fixed value of IAl, one 

can control the number of LUMs by tuning the system 
length L. In the integrable limit of Eq. (l), i.e., cy = 

r = 0, these linear instabilities can be exponentiated 

’ If even symmetry were imposed, the quasi-soliton would locate 

only at two locations, the center and the edge of the system, thus. 

a center-edge jump [ 6 1. 
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Fig. I. Evolution of system (1) with (Y = 0.004, r = 0.144, o = I. The initial condition $ = A + l exp(i2lrx/L), A = 0.8, E = 2 x 1V5. 

Plotted here is 1$(x, I) I. (a) Tempoml chaos in the presence of one LUM, L = 6.4; (b) STC in the presence of two LUMs, L = 9.6, 

via Bicklund transformations to obtain global repre- 
sentations of the homoclinic orbits. These homoclinic 
orbits and their target tori have complicated spatiotem- 
poral structures (e.g., the spatially independent solu- 

tion above is one of the simplest examples of these tar- 
gets). For the one LUM case, the perturbation induces 
homoclinic crossings as signified by the ;L-jumps 

of one quasi-soliton, which constitutes, by translation 
invariance, essentially a class of one spatial struc- 
ture, i.e., a quasi-soliton - hence, spatial correlation 

(as confirmed below). When more than one unstable 
mode is present, there is an increasingly large num- 
ber of distinct classes of spatial excitations in forms 
of coexistence of many quasi-solitons or right and left 
traveling, spatially periodic or quasiperiodic nonlinear 
waves. A similar scenario occurs in studies of purely 

spatially chaotic, stationary waves [ 131. Whereas, in 
our case the instabilities associated with homoclinic 
orbits provide needed sensitivity for chaotic wander- 

ings among these spatial excitations under perturba- 
tions. The question is how many LUMs are needed to 
generate sufficiently many distinct spatial structures 
for the orbit to visit so as to reduce the spatial corre- 

lation, hence the onset of STC. 

To characterize spatially chaotic behavior, we 
first use the spatial correlation function C(X) = 
($(x’,~‘)$*(x’ + x,t’)). Average was taken over 
both space and time after sufficient long transients, 
e.g., t > 2 x 103, were truncated. Fig. 2 shows the de- 
pendence of C(X) on the system length. For L = 6.4, 
which corresponds to the one LUM case, clearly, the 
whole system is correlated (cf. Fig. la). However, 
for higher numbers of LUMs the system becomes in- 
creasingly decorrelated, signifying an onset of STC, 
as their correlation functions rapidly vanish. In Fig. 2 
(inset), the correlation at the half system length 
as a function of L shows a clear transition around 
Lth = 21r/A, above which the second LUM enters. 
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Fig. 2. Dependence of the correlation C(X) on the system size L. Numerically. ImC(x) vanishes. Inset (see text): Transition of C( ;L) 

around &, = 27r/A (dashed line). The symbol size indicates the numerical error estimate. 
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Fig. 3. Mutual information Z(X). Fine line: one LUM; dotted line: two LUMs as also shown in the inset on the linear-log scale (the 

straight line is a fit to an exponential form). 
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The numerical value of L above which C( L/2) N 0 
differs from Lib only by 4%. Fig. lb shows a case 
with two LUMs, which displays drastically different 
spatial patterns from those in Fig. la. To further cor- 

roborate these results, we use an MI measure, which is 

given by 1(x, Y) = JdXdYh,r Wh,r/(hh) 1 
between two spatial points x and y. Here X = $(x) 

and Y = $(y). PX,J is the joint probability density 
distribution between X and Y. PX = s PX,Y dY. By 
the translational symmetry of the system, Z(x, y) = 
1(x - y). As shown in Fig. 3, the MI for the one 

LUM case remains nonzero across the system while it 
vanishes exponentially for the two LUM case with a 
decay length 5 - 0.30. As solitons are phase-locked 

to the external driver, we argue that the driving fre- 

quency w controls this decay length since the soliton’s 
frequency determines its spatial width, i.e., the co- 

herence length in space, while the driving strength r 
changes 5 as a higher order effect only. 

Before turning to ESD for the system ( 1)) we show 

in Fig. 4 that the system ( 1) reaches an equipartition of 
the power of the spatial Fourier modes for long wave- 

lengths and the number of the Fourier modes in this 

“thermally” equilibrated subsystem is approximately 
the same as the number of LUMs. This equipartition 
has ramification for the statistical description of our 

system, e.g., enabling us to formulate a fluctuation- 
dissipation theorem for an ESD for the subsystem. Ob- 

viously, the observation poses an intriguing question 
for future investigations, i.e., what underpins the rela- 

tion between linear instabilities and the equipartition 
of these modes. To construct the ESD for Eq. ( 1) we 
follow Zaleski [S] and for an arbitrary wavenumber 
A and any &k, we can rewrite the Fourier transform of 

Eq. ( 1) in an equivalent form: 

i& = ( k2 - i&k)ak - (2/L’)x<a,a,,af+,_, 
491) 

+ Lhi’w’+Y)&O + Fk( t), (2) 

where Fk(t) = -i(a - &)ak - 2/L2~‘a&r1a&_k. 

C’ denotes summation over all /qj, lpi, )q+p - kl < 
A and C’, a summation in which at least one of (41, 
IpI, 1q + p - kl is no less than A. Next, we view the 
chaos in the dynamics as a stochastic source for some 
selected modes, say, ]kJ < A, i.e., _4 as a cutoff, and 
study how the dynamics of these modes is renormal- 
ized over some coarse-grained scales. In this setting, 

Fk( t) can be naturally regarded as the external effec- 
tive stochastic force and &k as an effective correction 
to dissipation and/or dispersion (e.g., a k-dependent 

Re &k will represent an effective k-dependent damping 

while Im Gk an effective dispersion). &k is determined 
by requiring causality, 

(Fk(t)a;(t - s))~ = 0, for s > 0, (3) 

where (. .)t is the time average over t, which leads to 

?i’k = (Y 

(4) 

where (...a;)(~) = (...(t)a;(t--s)),. Relation (4) 
implies explicit s-dependence (we will denote this as 
ffk( s) below). The existence of an ESD with this type 
of memory function requires an s-independence - at 

least over some time scale (a coarse-grained time). 

Our numerical computation of the full dynamics ( 1) 
shows that Eq. (4) is indeed s-independent for the 

perturbed NLS even in the regime of only temporal 
chaos, without requiring STC. Fig. 5 illustrates a case 
in the presence of the temporal chaos alone. From the 
inset of Fig. 5, it is evident that there is a time-scale 

r N 27r/w (determined by the external driver) after 

which the numerically computed ak (s) is nearly con- 

stant over time scale r < s < r’, where r’ is the half 
lifetime for the slow decay of (ak ( t) a: (t + s)),, k < 
A. We observe that the regime of G- < s < r’ involves 
many averages of chaotic ;L-jumps of a quasi-soliton 
(homoclinic crossings). Our results on the effective 
Re gk show that it gives rise to dissipation for k < A, 
with Re&k - a (within our numerical error). The 

renormalization factor Im &‘k is A-dependent, e.g., for 
A = 47~/L, L = 6.4, Imhk = -0.475, k = 25-/L as 
shown in Fig. 5 (inset), while, for A = lOr/L, Im &‘k 

has the form of 00 + &k* + /34k4, leading to a mod- 
ification of the Schrodinger dispersion o = k2 to w N 
(1 + pl)k* + &k4, PI N -0.02 and & - 0.0061. 
In addition to this constant &k(S) test, another cri- 
terion for a successful construction is that the effec- 
tive stochastic force should have no long-time corre- 
lation. This is satisfied in our case (Fig. 5) : Gk( S) f 
(Fk( t) F; (t + s)), decays rapidly with a decay time 
N r, i.e., it can be regarded as no correlation over the 
coarse-grained timescale. The construction procedure 
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Fig. 4. Equipartition of the power of spatial Fourier modes in the long wavelength regime. The modes in the region left of the dashed vertical 

line are linearly unstable. Each point of any symbol labels one mode. The dotted lines between the symbols for guiding the eyes only. 

d 
N- 
S iz 0.50 

v 
;;_ 

3 
.= 

5 0.25 

‘= 

-0.25 

i 
0.5 - 

3 d 
Jd 

ii! Rea, 0.0 - j 

'S 

8 
3 

-0.5 

'mu, 

-1.0 
0.0 5.0 10.0 15.0 

s (2K/C0) 

Fig. 5. Rapid decay of the force-force correlation Gk (s) (Re Gk (s) (thick line) and Im Gk ( S) (thin line) ) and the effective aI, ( S) 

(inset). The time unit is normalized by 2n/w. r’ is considerably larger than the time-scale shown here (see text), 
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only demands the causality (3)) which only involves 
correlations for the same k. (Fk(t)a;,(t - s))~ for 

k # k’ is left unconstrained. However, our numerical 
results indicate that, interestingly, for the Fk (t) con- 

structed above, (Fk(t)a;,( t - s)), M 0 for r < s < 
7’ also holds for k # k’. The fulfillment of causal- 

ity in this general form is indicative of a deep self- 
consistency in the construction to validate the inter- 

pretation of Fk (t) as an external stochastic forcing. 
Chaotic behavior in systems with extended spatial 

domains is central to an understanding of nonlinear 

waves in nature; yet, today spatiotemporal chaos is the 
least understood of all chaotic behavior. Commonly 

held beliefs about spatiotemporal chaos include: (i) 

two-point correlation functions are usually adequate 

measures of the degree of spatial correlation; (ii) spa- 

tiotemporal chaos requires systems with very large 
(infinite) spatial extent, with many (infinite) insta- 
bilities; and (iii) the validity of “effective equations” 

to describe the behavior of the waves over long dis- 
tances and times requires spatiotemporal chaos. The 
initial numerical experiments for the perturbed nonlin- 

ear Schrodinger equation, as described in this Letter, 
suggest that these three beliefs should be re-examined: 
(i) mutual information captures a spatial scale for the 

loss of coherence which can be missed by two-point 

correlation functions; (ii) for the NLS system, only 
two instabilities are needed for the onset of spatial 

decorrelation; and (iii) only temporal chaos seems 
needed for the validity of the effective dynamics, 

While these initial studies are restricted to the NLS 

equation, they should apply to a large class of weakly 
perturbed, completely integrable nonlinear waves - 
provided the integrable system possesses instabilities. 
To see this, realize that each such instability is associ- 

ated with a spatially localized wave, which under pe- 

riodic boundary conditions (in contrast to Neumann 
boundary conditions), can reside anywhere in the pe- 

riodic spatial domain. If two or more such localized 
waves are present, a measurement that locates one 
wave near a point x gives no information about the lo- 
cation of the others. This uncertainty spatially decor- 
relates the system in the presence of two (or more) 
instabilities, and provides a general mechanism for 
the generation of spatiotemporal chaos as seen in our 

numerical study. 
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