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Abstract

In order to identify and understand mechanistically the cortical circuitry of sensory information processing estimates are needed of
synaptic input fields that drive neurons. From intracellular in vivo recordings one would like to estimate net synaptic conductance time
courses for excitation and inhibition, gg(f) and gi(¢), during time-varying stimulus presentations. However, the intrinsic conductance
transients associated with neuronal spiking can confound such estimates, and thereby jeopardize functional interpretations. Here, using
a conductance-based pyramidal neuron model we illustrate errors in estimates when the influence of spike-generating conductances are
not reduced or avoided. A typical estimation procedure involves approximating the current-voltage relation at each time point during
repeated stimuli. The repeated presentations are done in a few sets, each with a different steady bias current. From the trial-averaged
smoothed membrane potential one estimates total membrane conductance and then dissects out estimates for gg(¢) and gi(¢). Simulations
show that estimates obtained during phases without spikes are good but those obtained from phases with spiking should be viewed with
skeptism. For the simulations, we consider two different synaptic input scenarios, each corresponding to computational network models
of orientation tuning in visual cortex. One input scenario mimics a push—pull arrangement for gg(¢) and gi(¢) and idealized as specified
smooth time courses. The other is taken directly from a large-scale network simulation of stochastically spiking neurons in a slab of cor-
tex with recurrent excitation and inhibition. For both, we show that spike-generating conductances cause serious errors in the estimates
of gg and g;. In some phases for the push—pull examples even the polarity of g is mis-estimated, indicating significant increase when gj is
actually decreased. Our primary message is to be cautious about forming interpretations based on estimates developed during spiking
phases.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Primary goals of sensory neurophysiologists are to
understand the dynamics of information processing and
representation in various brain areas. What are the mecha-
nisms (circuitry, synaptic and intrinsic cellular properties)
that underlie sensory processing and that can account for
the firing patterns of neurons? What are the relative contri-
butions of feedforward and recurrent input, of the excit-
atory and inhibitory synaptic fields? What data are
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needed to develop and assess theories that can provide
insights on mechanisms? We take a case-study approach
here, the orientation tuning of visual cortex, and ask about
the analysis of data that can give us reliable estimates of
dynamic synaptic fields.

There are different theories about the wiring architecture
of the primary visual cortex, mainly differing by the sensi-
tivity to spatial phase in the coupling between cortical
neurons. If we assume that the coupling is phase insensi-
tive — see for instance the model studied in McLaughlin
et al. (2001) and Wielaard et al. (2001) of a network of inte-
grate-and-fire neurons in area 4 Co of V1-and we present a
drifting grating stimulus, then, after phase averaging,
both the inhibitory and the excitatory cortico-cortical
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conductances are almost constant over one cycle of the
stimulus. On the other hand, a spatial phase selective cou-
pling — see for instance the model built in Troyer et al.
(1998) — could produce an antagonistic temporal push—
pull between excitatory and inhibitory cortico-cortical
conductances.

To assess the sensitivity to spatial phase and possibly to
distinguish two such mechanisms one relies on estimates of
synaptic conductances, excitatory and inhibitory, that
drive the neurons. Experiments that provide intracellular
recordings, membrane potential time courses, of cortical
cells are crucial in this regard. Several recent studies
(Borg-Graham et al., 1998; Hirsch et al., 1998; Anderson
et al., 2000; Anderson et al., 2001) are achieving this feat.

Recent theoretical studies (Rudolph and Destexhe,
2003; Rudolph et al., 2004) have shown how to estimate
synaptic conductances in the presence of noise. In these
approaches, as well as in Borg-Graham et al. (1998), the
estimates are obtained from subthreshold membrane
potential recordings, thereby cautiously avoiding contami-
nation by intrinsic conductances.

However, the presence of spikes is not always avoidable.
In visual cortex, for example, experiments with drifting
grating stimulation often evoke spiking activity in the cells,
which cannot be easily prevented (say by hyperpolarizing a
cell) or removed from the data. Sometimes, in experiments,
one tries to remove this contamination of intrinsic conduc-
tances by filtering the membrane potential and, in some
sense, clipping the spikes. For instance, in Anderson
et al. (2000) data analyzed with this procedure is inter-
preted as experimental evidence of the push—pull arrange-
ment, thus supporting the phase selective coupling
hypothesis. These conclusions are achieved by estimating
the synaptic conductances through linear fittings of filtered
membrane potentials, some of which show clear spiking
activity. Mathematically speaking, the linear fittings are
equivalent to the approximation that assumes averaged
membrane potential depends linearly on the applied cur-
rent. This approximation is only valid if the neuron is
not spiking, as theoretical bifurcation diagrams can show
(illustrated below in Fig. 5).
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In order to introduce some of the issues we outline the
procedure. The main concern is how to accurately estimate
the synaptic conductance g, and the synaptic reversal
potential Vy,. A suitable procedure uses different steady
current injections, denoted by I,p,,, to sample a portion
of the cell’s current-voltage relation, (v) versus I, (Where
(v) is the short-time-averaged voltage). When gy, is dom-
inant, the I,,,—(v) curve would become linear and gy,
could be estimated using linear regression. By Ohm’s law,
1/gsyn would be the slope of the regression line. However,
as seen in Fig. 1, the dominance of g, is not true
when the cell is spiking. Accordingly, one could inject
negative enough I, current to prevent the cell from firing
and then do the estimations of gy, and V. This is the
case shown in the upper panels of Fig. 4. In contrast,
the lower panels show the same estimation but using
applied currents that do not prevent the cell from firing.
It can be appreciated, then, that the estimation of the total
conductance during phases of spiking is far from the value
of &syn-

This is the simplest illustration of how and how not to
estimate ggyn and Vg, Apart from the problems reported
above and illustrated by Fig. 4, there are other relevant
factors:

e In general, both excitatory (gg) and inhibitory (gy) syn-
aptic conductances are present. Thus four quantities
are to be estimated: gg, g1, Vg and V7. Since we can usu-
ally extract only information on two quantities (gsy and
Veyn), We must assume values for Vg and V; to obtain gg
and gj.

e The conductances gg and g; are time-varying, fluctuat-
ing around slowly varying means, as modulated by the
drifting grating.

e The I,,, range may overlap both the non-firing and the
firing regime for different times, and so the ,p,—(v) rela-
tionship will not be linear.

¢ Firing is stochastic and therefore the problem of how to
properly average and smooth the membrane potential
arises. See Rudolph and Destexhe (2003) and Rudolph
et al., 2004 for an estimation of the conductances from
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Fig. 1. The membrane potential of a neuron model evolves rhythmically during 100 ms. Between the 10th and the 60th millisecond, an excitatory current
of type Iyn = Zeyn(v — Viyn), With gg,, = 0.05 mS/cm? and Ven = 0mV, is injected. Panel A shows the response of the cell during a 20 ms window (the inset
shows a 100 ms period). For the same time interval, in panel B, we show the total ionic conductance, gion, the average of the ionic conductances, (gion), the
total synaptic conductance, gy, and the leakage conductance, g. Clearly the dominance of g, is broken significantly when the cell is spiking.
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a noisy hyperpolarized membrane potential using Orn-
stein—Uhlenbeck processes and Fokker—Planck equa-
tions.

Here, we evaluate the accuracy of conductance esti-
mates. We consider a conductance-based model of a pyra-
midal cell together with two different input scenarios of
excitatory/inhibitory conductances Section 2, a smooth
and idealized push—pull arrangement of excitation and inhi-
bition (smooth conductance input) and a stochastic arrange-
ment obtained from a computational network (stochastic
conductance input).

In Section 3, we analyze the usual procedure of linear
estimation of conductances and give a mathematical expla-
nation of the errors in the estimations obtained in this way.
These problems appear clearly when applying the proce-
dure to the spiking cell model subjected either to the
smooth conductance input or to the stochastic conductance
input. In both cases, when the cell model is spiking the dis-
agreement between the estimated conductances and the
actual prescribed ones is apparent.

2. Methods

Our computational experiments are carried out with a model for a sin-
gle cortical neuron and two prescribed synaptic drives: the first (which we
call smooth conductance input), made up by mimicking smooth time
courses of the synaptic excitatory and inhibitory conductances (related
to one possible wiring architecture in primary visual cortex); the other syn-
aptic drive (which we call the stochastic conductance input), is obtained
from the activity of a computational network of about 16000 neurons
(see Tao et al., 2004). Our cell model serves as “reporter cell”, that behaves
as a specific cell of the network responding to the network-generated syn-
aptic field, reminding us of an in silico version of the dynamic clamp tech-
nique. The network itself takes into account stochastic effects and so, the
synaptic input that our cell receives is noisy.

For the purpose of this paper, the main features can be observed in
both prescribed synaptic input scenarios, somewhat more transparently
in the case of the smooth conductance input. However, the time course var-
iability of conductances in the stochastic conductance input shows features
which are associated with less idealized situations.

2.1. Adapted pyramidal cell model

We will use a Hodgkin—Huxley type model (HH model) which
describes the activity of a cortical pyramidal cell. We adapt a simplifica-
tion of Traub’s model, borrowing the values for the characteristic conduc-
tances from Wang (1998). Compared to Wang’s two-compartment model
in Wang (1998), our version includes the soma compartment only; we have
removed the dynamic equation for the calcium concentration and brought
the gating variable m to its steady-state, m = m..(v). The resulting model
contains both a sodium and a potassium current, which drive the mem-
brane potential during spiking.

The current-balance equation for the membrane potential, v = v(?), is

dv
Cm =
dr

71L71Na71K715yn+1app‘ (1)
Eq. (1) contains the synaptic current (/y,,) and a constant applied current
(Lapp), controlled by three parameters: the two (excitatory and inhibitory)
synaptic conductances and the intensity of /,,,. The ionic currents in (1)
are given by

I = gL(U - VL)ﬁ
I = gaml (0)h(o — Vo),

Ik =ggn'(v—"Vx).

The gating variables & and n satisfy the usual type of differential
equation:

(il_v: = p[on, (v)(1 —w) — B, (v)w] = ¢%()U)7w’ :

o (0)

where w represents either & or n. In general, w,(v) =i and

N 1
7,,(v) = o Where,

1

o (v) = 0.07exp(—(v+ 50)/10), B, (v) = T exp(=0.1(0 £ 20))

v+ 34
exp(—0.1(v +34)) = 1’

o, (v) = —0.01 B, (v) = 0.125exp(—(v + 44)/25)

01 v+ 33
" exp(—0.1(v +33)) — 1’

o (V) = — Pm(v) =4exp(—(v+ 58)/12).

The biophysical parameters that we fix throughout and the units are
the following:

Conductances gr=0.1, gna =45, gx = 18
(mS/cm?)

Reversal potentials VL =—65, Vna =55, Vk =80,
(mV') Ver0, Vi~ —80

Capacitance Ch=1
(WF/em?)

Non-dimensional constant o=4

Applied currents
(nA/em?)

2.2. Synaptic drive

The computational model that we have described above will be driven
by synaptic inputs of type Iy, = ge(v — Vi) + gi(v — V1), where gg = gg(1)
and g1 = gi(¢) represent, respectively, the sum of all excitatory and inhib-
itory conductances received by our neuron model.

We present results using the two different types of prescribed time
courses (gg(?),g1(?)): the smooth conductance input and the stochastic con-
ductance input. We describe them next.

2.2.1. The smooth conductance input, a model of phase selective coupling

The smooth conductance input tries to mimic the excitatory and inhib-
itory conductances obtained after assuming a phase selective coupling in
the visual cortex, which leads to a push—pull temporal relation between
excitatory and inhibitory cortico-cortical conductances. On the other
hand, the LGN impinges on the cortical cells over half of the cycle (in
an excitatory way). We have represented this fact by specifying the
LGN input conductance to trace a downward (negative curvature) parab-
ola in the first half of the cycle. The pushes and pulls of the synaptic con-
ductances have been mimicked using parabolas with different amplitudes.
To simulate the effect of different orientations of the drifting grating stim-
uli, we have introduced a parameter to modulate excitation through both
the LGN input and the cortico-cortical excitation by increasing the ampli-
tude of the above mentioned downward parabola. The inhibition has the
same temporal profile for all values of this parameter. Typical (gg(?), g1(¢))
temporal profiles and the respective responses of the cell (1) are given in
Fig. 2. The same inputs are used in Fig. 6. One can imagine that the
smooth time courses of gg(#) and gi(¢) are due to an average across the
afferent population.
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Fig. 2. Responses of model (1) for three different levels of excitation (decreasing from the top to the bottom) in the smooth conductance input. These levels
of excitation try to simulate the effect of different drifting grating’s orientations.

2.2.2. Conductances from a spiking network (stochastic conductance input)

In order to have a more realistic situation, inducing sparse spikes
rather than repetitive firing (thus contrasting with the smooth conductance
input) and, also, to observe the influence of stochasticity, we use the con-
ductances profiles from a computational network model of V1 with 128>
integrate-and-fire neurons (Tao et al., 2004; McLaughlin et al., 2001; Wiel-
aard et al., 2001). In particular, we have chosen one cell, representative of
the cells of the layer 4Co of the primary visual cortex. We call it the refer-
ence cell.

Once the reference cell of the network is selected, its conductance time
courses are inherited by the reporter cell that we are simulating, that is: we
drive the cell modeled by Eq. (1) with the “actual” (gg(¢), g1(¢)) of the ref-
erence cell. In other words, if we consider the HH model and the conduc-
tances received, say, by a complex excitatory cell of the network, we are
studying how a “‘typical” complex HH-like excitatory cell would behave
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in the network-generated synaptic field. This reporter cell does not send
impulses to the others; it is thought of as purely postsynaptic in the
network.

For the reference cell in Tao et al. (2004), we collect the conductance
time courses after presenting different drifting gratings at 8§ Hz. After a
simulation of the network, we extract the time courses of both the excit-
atory and the inhibitory conductances that the cell receives under each
stimulation and use them to drive our HH model reporter cell.

In Fig. 3 we show some temporal profiles of synaptic conductances
that we inject to our computational neuron, along with the resulting mem-
brane potentials. For the sake of brevity, only the preferred and the
orthogonal to preferred drifting gratings are presented. The time interval
is [0, 125] ms because the procedure we apply to the data implies an aver-
age over eight cycles (since the stimulus comes from a 8 Hz drifting
grating).
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Fig. 3. (A) The conductances received by a selected cell of the stochastic conductance input under a drifting grating at the preferred orientation of this
selected cell. (B) Response of the HH model cell to the stimulus plotted in A. (C) Input conductances from a drifting grating, orthogonal to the preferred
orientation. (D) Response of the HH model cell to the stimulus plotted in C. These input conductances are the same used in Fig. 7.
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2.3. Numerical methods

All the computations are carried out using a fourth order Runge—
Kutta method with a fixed step size Az = 0.05 (ms). In Appendix A we also
describe the smoothing techniques that have been used.

3. Results

This section is divided into three parts. We first illus-
trate the response of the pyramidal cell model given by
(1) for different synaptic drives, constant as well as the
two time-varying drives described in Section 2.2; secondly,
we describe and analyze the typical methodology for
obtaining the estimates of the conductances; and, finally,
we examine these computed estimates under the two differ-
ent dynamic synaptic drives. The strategy consists of con-
sidering known conductance profiles to stimulate a neuron
and, afterwards, re-estimate these conductances to evaluate
the errors.

3.1. Conductances time courses. synaptic and intrinsic.
Confounding factors in estimation

When estimating synaptic conductances, one needs them
to be dominant. However, as the time courses of conduc-
tances in Fig. 1 show, when the cell is spiking, the ionic
conductances can be transiently very large. A direct estima-
tion of the synaptic conductances from intracellular mea-
surements, thus, seems inaccessible.

Realistic input conductances received by a cell are not as
simple as those of Fig. 1. Next, in Figs. 2 and 3, we show
the responses to two types of synaptic drive scenarios
(smooth conductance input, stochastic conductance input)
that we will use to test the linear estimation technique. In
Fig. 2, for the smooth conductance input, we see increased
firing during the phase of excitation as the amplitude of
gg(?) increased (top row to bottom row) the amplitude.
In this case the slowly and smoothly varying conductances
lead to continuous variations in instantaneous firing rate.
Note the anti-phase behavior of gi(z). For the case of sto-
chastic conductance input, in Fig. 3, the response is shown
under stimulation by two different drifting gratings (pre-
ferred and orthogonal to preferred). In this case only a
few spikes per cycle, even for the preferred orientation,
are generated; the membrane potential fluctuations resem-
ble those as seen in experiments.

3.2. Applying the methodology for estimation of synaptic
conductances to a neuron model

As explained in Section 1, in recent works experimental
researchers have coped with the problem of estimating the
synaptic conductances in primary visual cortex (see Borg-
Graham et al., 1998; Anderson et al., 2000), for instance,
as relevant information to unveil the wiring architecture
of V1. At times, spiking is unavoidable and can lead to

important misinterpretations of the data. We illustrate this
point in computational models and suggest how to reduce
the problems.

3.2.1. Linear procedure to estimate the synaptic
conductances and the effective reversal potential

The standard estimation procedure (filtering plus linear
regression) can be described through the following steps:
(1) stimulation of cells through drifting gratings (in exper-
iments) or input conductances (in numerical simulations).
As a consequence, the cell’s membrane potential, v(¢), is
recorded (in experiments, intracellularly). The time of
recording is chosen to be a multiple (M) of the drifting per-
iod; (2) use of a low-pass filter to clip the spikes and
smooth the membrane potential; (3) average the membrane
potential over the M cycles; we call vg,(¢) the final out-
come. Observe that vg, is defined over 1 cycle; (4) estima-
tion of the total synaptic conductance and the effective
reversal potential; (5) estimation of the excitatory and the
inhibitory synaptic conductances.

Step 1 is exclusively experimental and step 3 does not
require further explanation. A discussion about filtering
(i.e., step 2) is given in Appendix A. Thus, we will focus
here on the details involved in the two remaining steps 4
and 5.

The procedure to estimate the total conductance consists
of applying several (N) injected currents I gfgp, where
j=1,...,N, and smoothing the resulting membrane poten-
tials, v¥)(7). After that, if the stimulus is periodic in time, an
average over the M cycles is required to obtain what we will
call vg’li(r). Hence, for each ¢, we have a set of pairs

(e Vi (1)

In this paper, we will always consider Ig’gp =—1+
(j—1)/10pA/em?, for j=1,...,21, that is, L€
{-1,-09,-0.8,...,09,1} pA/cmz. We choose this inter-
val to be realistic; this choice is justified in Appendix B.
For each current, we have filtered the membrane potential
over 1 s. For the stochastic conductance input, the stimulus
comes from a drifting grating at 8 Hz and so, we will aver-
age over the 8 cycles (step 3). For a preview of the result
after this last average, see Fig. 7. For the smooth conduc-
tance input, since it does not contain stochasticity, a single
cycle stimulus is presented and so we do not need to aver-
age after smoothing.

The estimation procedure is motivated as follows. If the
solutions of the system of differential (Eqgs. (1) and (2);,,)
are close to the steady-state (a critical point representing
a hyperpolarized state), then the activity of the ionic chan-
nels is negligible and also, » ~ 0. Hence, from (1) we would
have

0~ —gp(v—"Vi)—gelv— Vi) —gi(v—"1) + Lapp

and so
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Fig. 4. We use a computational model of a cell with g, = 0.15 mS/cm? to test the procedures for estimating &syn- The curves in the left panels (A, C) are
the filtered membrane potentials of a neuron model; that is, after applying each current, we use a median-based filter, as in Anderson et al. (2000), to
obtain a smooth membrane potential that contains only small transients instead of the large spikes (we denote this smoothed potential by Vg;,). The crosses
on the right panels (B, D) show the three values of the filtered membrane potential, V5, obtained from the three injected currents shown in the respective
left panels (A, C). The sloped line in the right panels (B, D) is a linear fit of the three values. In the upper panels (A, B), we apply injected currents that
prevent the cell from firing and we obtain a good estimation of gy, (the inverse of the slope is close to 1/0.15 ~ 7). Contrary to the upper panels (A, B), in
the lower panels (C, D) the injected currents do not prevent firing. Despite the filtering of the cell’s voltage, the estimations are far from satisfactory (for
reference, the solid line on the righthand lower corner of D has the correct slope 1/0.15).

where

Var(t) = ge(®) Vﬁziﬁ)t;ﬁ +aLlL

and g, (1) =gg(t) +&1(t) + 2L
(4)

Then, thinking of (3) as v(¢) = v(t;Lapp) = Vesr(t) +
ml apps We realize that ggy,(#) corresponds approximately
to the inverse of the slope of v(#;1,p,) and Veg(?) to the
intercept v(¢;0), see Fig. 4 (panels B and D) for an illustra-
tion. Hence, we can have an indirect measure of the total
synaptic conductance, geyn estim(f): = gsyn(?), and the effec-
tive reversal potential, V.y(¢), by linearly fitting at each
point in time the relation between the injected current
and the membrane potential.

Once gqyn(?) is estimated, still neglecting possible spiking
conductances, the excitatory (gg(?)) and inhibitory (gy(¢))
synaptic conductances can be estimated from equations
in (4) — assuming that values for Vg, V7 and g1 are known.

Fig. 4 shows a simple application of the procedure to
obtain ggy,(?) for a fixed 7. The upper panels (A,B) show a
case of accurate estimations (the cell model is not spiking at
all), while the lower ones (C, D) illustrate inaccurate estima-
tions due to the presence of spikes for some of the I, values.

So far, the basis of the method and its first handicaps
(see Fig. 4D) have been presented; now, we are going to
analyze its validity in more detail.

3.2.2. Analysis of the procedure

The method obviously works well when the synaptic
activity is exclusively driving the system because, then, (3)
holds. However, when the cell is spiking or close to spike
initiation or when only the potassium channels are open

(thus hyperpolarizing), the presence of intrinsic conduc-
tances invalidates (3) and the linear relation between v
and I, is broken. As an attempt to avoid this problem,
intracellular spiking voltage recordings are often filtered
(obtaining vgy(¢) according to step 2 above mentioned) in
order to clip the spikes and get rid of intrinsic conduc-
tances. However, our claim is that, even with this filtering,
there is in general not a linear relation between vg(¢) and
Lupp-

Because of the stochasticity of the signal, both in the
experiments and in some of our simulations, a median-
based filtering is used (see Appendix A for more
information)."

For theoretical analysis of potential difficulties, we con-
sider the mean voltage ((v)) as a third filter (only used in
Fig. 5). For fixed conductance inputs (gg(f) = gg.o.
gi(?) = g10), we have performed a comparison between
the data filtered with a median-based filter and those fil-
tered with a mean-based one. Both provide very similar
Lpp—vsi curves. Thus, the I,,,—(v) curves constitute a solid
basis for our theoretical arguments.

Fig. 5 displays a typical I,,,—(v) relationship for the
model cell ((1) and (2);,,). It shows that even with a good

' In more idealized cases, such as our smooth conductance input, other
filters can achieve smoother outputs, like the Gaussian filtering in Fig. 6
(see Appendix A and Fig. 8 for the comparison between filtering modes).

2 Moreover, numerical software such as xppaut (see Ermentrout, 2002),
and analytical tools in dynamical systems theory typically favor the
computation of bifurcation diagrams in terms of the mean voltage (a
continuous variable) versus the applied current rather than in terms of the
median-based filtered potentials (non-continuous variable) versus I,y
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Fig. 5. In A and C, we show theoretical I,,,—(v) relationships for Eq. (1).
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simulations using the stochastic conductance input; bifurcation diagrams
are computed using the AUTO feature of the package XPPAUT (see
Ermentrout, 2002). The filtering is the median of 21 values in a 5ms
window around the value. Observe that the I,,,—(v) relationship is very
close to linear when /,,;, is small enough (and so the neuron is not spiking).
This linearity is clearly lost above the I,,, value where repetitive spiking
emerges (filled circle). This fact can be better appreciated in panels B and
D, which are zooms of the small boxes in A and C, respectively. Panels B
and D are restricted to a physiologically plausible interval I, € [-1,1],
the one where we have performed the computations of Figs. 6 and 7. Each
value of the dotted curve in B (analogously, in D) is the filtered value of
the membrane potential at the moment when (gg,g1) = (gg.g1)1 (resp.,
(ge,g1)2). The fact that these values have been recorded during a
simulation in which (gg, g;) is not constant (values in panel B correspond
to t=20ms in the right column of Fig. 7 and values in panel D
correspond to £ =51 ms in the middle column of Fig. 7), means that the
filtered values vg(7) do not capture the nonlinear conductance features of
the spiking neuron: in D, the slope of the best linear fit of the dotted curve
is far from the actual one (in fact the estimations of gg and g; have errors
of 50% and 90%, respectively). The dotted curve would adapt to the
theoretical curve if (gg, gr) was constant. Instead, in B, we appreciate that
the linear fitting works well since the cell does not spike for any of the ,p,
values.

estimation of the average membrane potential ((v))
through filtering, the conductance would not be well esti-
mated: observe that the slope of the solid line in panel D
is not the same before and after the spike initiation point.

According to the I,,,—(v) relationship shown in Fig. 5,
we observe that if the cell is not spiking for any injected
current, then the (I{),v")) values fit to a straight line,
whose slope accurately estimates the inverse of the total
synaptic conductance, see panel B in Fig. 5. On the other
hand, if the cell is spiking for some injected current, then
the (1{),v") values lie on a nonlinear curve (the solid
curve in panel D).

Apart from the nonlinear nature of the I,,,—(v) curve,
panel D in Fig. 5 also displays another contaminating fac-
tor. The dotted points in panel D come from the values of
the actual gg and gy curves at ¢t =51 ms in Fig. 7, middle

column. For I, < I, where I' ~ —0.3 pA/cm?, the stimu-
lus does not elicit spikes for these values of gg and gy; it can
be observed that the dots where I,p, < I" are perfectly
located on the theoretical curve. However, when I, is
big enough and spikes are elicited close to t = 51 ms, then
the filtered values (dots) disagree with the theoretical pre-
dictions. This fact indicates that, for stochastic conduc-
tance inputs, there 1is an extra source for the
contamination of conductances.

Summarizing, we claim that the method is only valid for
those values situated in the non-spiking zone for all the
injected currents because the approximation in formula
(3) is not valid in the other regimes. In particular, the con-
clusions drawn from linear estimations of filtered spiking
intracellular recordings are not valid. The problems
reported here persist under different types of filterings,
under background conditions (not shown here) and kinds
of synaptic inputs, as will be further seen in the simulations
of Section 3.3. Before describing these results, we present
more detailed information about the sources of inaccurate
estimates.

3.2.3. Sources of overestimation and underestimation

In Fig. 5D, a case in which for some I, values between
—1 and 1 the cell is spiking, we have noticed that the fitted
line would have quite a different slope from 1/ggy,. In par-
ticular, the values of the voltage for I,,, > I" lic below the
theoretical curve. Then, the slope is lower and one will
overestimate the total conductance. This is the most typical
case of inaccurate estimation in ‘‘realistic” neurons
(because it is related to the presence of isolated spikes),
and explains why later (Fig. 7) we will encounter such
overestimations.

The other case of overestimation arises in smoother
input profiles like the smooth conductance input. Here,
one frequently observes that although linear fittings are
decent the inverse of the fitted slope is far from the total
synaptic conductance. This occurs, for example, when all
the injected currents induce spikes which are contained in
a small enough interval of I,,,-values (see for instance
the center of the spiking regions of the estimations in
Fig. 6; middle panel of rows C-E). In this case all the
(1§),,vY)) points lie close to some small region on the
curved part of the (v)—I,p, curve, away from the onset of
repetitive spiking. There, the slope is smaller than that of
the non-spiking region (see panel D in Fig. 5 for the theo-
retical prediction) and so, leads to an overestimate of the
inverse of its slope.

Of course, in the region on the steepest part of the 7,,,—
(v) curve, the total conductance would be underestimated,
but this is not so frequent and, when it happens, the filter-
ing process has also a strong influence. The clearest exam-
ples are in Fig. 6, just on the limits of the spiking domains.
Here we are filtering a single membrane potential for the
smooth conductance input and, when we are close to the
region of spiking onset, we use points that sample action-
potentials to filter non-spiking points and vice versa. This
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fact can give, for non-spiking points close to the spike ini-
tiation, some mean values larger than the predicted ones,
thus inflating the slope of the fitted line and so underesti-
mating the inverse of the slope.

3.3. Estimating synaptic conductances for simulated
orientation-tuned responses of cortical (V1) neuron model to
drifting grating

In this section, we show several simulations using Eq. (1)
with the two types of conductance inputs described in Sec-
tion 2.2. Up to this point, we have analyzed the local prob-
lems that can arise. Here, we want to focus on the
“macroscopic’ effects through examples.

The relative roles of inhibition and excitation are key to
understanding the wiring architecture of the cortex. In
recent years, some experimental data on intracellular v(z)
have been used to estimate the time courses of (gg(?),gi(?)).
We will simulate the response of the neuron model to the
two idealized inputs. As suggested in Section 3.2.2, our
results will show that the methodology can lead to consider-
able mis-estimates, and thereby a loss of support for some
interpretations. The two types of inputs (smooth conduc-
tance input and stochastic conductance input) should be
thought of as net input to a cortex cell that includes both
thalamic and intracortical interactions. In both cases, the
thalamus sends excitation to our cortical cell model in half
of the period. In the case of the smooth conductance input,
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Fig. 6. Estimation of effective reversal potential and conductances for background and for two different levels of stimulation: for the smooth conductance
input under model (1). The simulation is carried out over a 1 s cycle. The filtering is a Gaussian one (see Appendix A and Fig. 8) that performs a better
smoothing in the case of regular firing patterns. The first column shows the cell model’s background behavior. The second and third columns correspond
to different levels of excitation (see Fig. 2 to see the specified conductance profiles, which coincide with the green curves in rows D and E here). (Row A)
Response of the cell under the different situations. (Row B) Estimated reversal potential compared to the response in A filtered; the estimation is fairly
good, as we predict. (Rows C-E) Estimated conductances (total synaptic, excitatory and inhibitory) compared to the actual (specified) ones; the
estimations fail when the cell is spiking. Legend: v(f): membrane potential; V.u(f): estimated membrane potential; vg(7): filtered actual membrane
potential; gy cstim(?): estimated total synaptic conductance; goyn(#) = gg(#) + g1(¢) + gL: actual total synaptic conductance; gg csiim(?): estimated excitatory
synaptic conductance; gg(?): actual excitatory synaptic conductance; gy estim(?): €stimated inhibitory synaptic conductance; gi(¢): actual inhibitory synaptic

conductance.
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the period is 1000 ms, while for the stochastic conductance
input it is 125 ms (in fact, the simulation runs for 1000 ms,
but we average over 8 cycles to reduce stochasticity).

In Figs. 6 and 7 we present the results in a compact way,
where the panels are organized as follows. Each column
corresponds to a different presentation of stimulus (each
stimulus producing a different level of excitation on the
cell). The first row (A), in Fig. 6 is the response elicited
by the cell and, in Fig. 7, it is a histogram of the number
of spikes; the second row (B), shows the measure of the
smoothed and averaged membrane potential for I,,, =0
compared to the estimated effective reversal potential from
(3); the third row (C), contains a panel with the prescribed
total synaptic conductance, g, =g+ g+ g and the
total conductance estimated from (3), geyn estim; finally, in
the fourth and fifth rows (D, E) we compare (respectively)

the prescribed excitatory and inhibitory conductances with
the ones estimated from (4).

3.3.1. Smooth conductance input: specified smooth time
courses, with g and g; in push—pull antagonism

The smooth conductance input has been modeled to
mimic the antagonism between excitatory and inhibitory
cortico-cortical inputs. It is not intended to be realistic,
but a paradigm for this antagonism. The conductance
inputs in this case separate clearly a spiking domain and
a non-spiking one. This allows to better distinguish the dif-
ferent quality of the estimations, as we have discussed in
Section 3.2.

In Fig. 6, we can clearly appreciate that when the synap-
tic currents dominate the activity of the cell (e.g.,
t 2 500 ms for the last column) the estimations are
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Fig. 7. Estimation of effective reversal potential and conductances for background and two different drifting gratings applied to the stochastic conductance
input on model (1). We average over the 8 cycles of 125 ms, given by the temporal frequency (8 Hz) of the drifting grating. The filtering is the median of 21
values in a 5 ms window around the value; this filtering is more efficient than the Gaussian one when the spikes are sparse. The first column shows the cell
model’s background behavior. The second and third columns correspond to preferred and orthogonal to preferred drifting gratings, respectively (see Fig. 3
to see the conductance profiles injected). (Row A) Histogram of the model’s spike response (in bins of 5 ms) under the different situations. (Row B)
Estimated reversal potential compared to the response in A filtered; the estimation is fairly good, as we predict. (Rows C-E) Estimated conductances (total
synaptic, excitatory and inhibitory) compared to the actual ones (injected); the estimations fail when the cell is spiking. The estimated conductances are
clipped in amplitude in order to allow visual comparison on these plots; their peak values (mS/cmz) are: Max gyn estim ~ 8.83, MaX g esiim ~ 2.79,

max gy estim ~ 5.94. See caption of Fig. 6 for the legends.
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correct. On the other hand, the estimations fail when in
spiking regimes (although sometimes the linear fittings
are well correlated). The estimates of gg(#) (row D) can
be in error by factors of 2-4. The mis-estimates of gy(¢) dur-
ing spiking are more severe, failing to even correctly indi-
cate the polarity in gy swings. According to the estimated
time course, g is peaking and comparable to gg during
the spiking phase when actually g is dipping then. Finally,
in the transition between spiking and non-spiking (e.g.,
close to t=500ms in row E third column), a kind of
underestimate (undershooting) is observed; here, the corre-
lation of the linear fitting is very poor.

3.3.2. Stochastic conductance input: stochastic inputs from
network simulation

In Fig. 7, we present the estimations of conductances
and effective reversal potential for the stochastic conduc-
tance input to our cell. We have used the median filter with
a 5 ms window and then averaged over the 8 cycles (125 ms
each cycle).

The inaccuracies indicated in Section 3.2 are evident: the
estimations of conductances are pretty good when the
membrane potential remains under threshold, but fail in
the neighborhood of a spike. This fact can be better appre-
ciated in the second column of Fig. 7, corresponding to a
drifting grating at preferred orientation that induces a
strong response. The correlation between the spiking
regions and the inaccurate estimates is very clear in the sec-
ond column between 20 and 60 ms, where the estimated gg
and g; can be 15-20 times larger than the actual values
(note, the estimated time courses have been clipped for
plotting purposes).

4. Discussion

In this paper, we have revisited the methods for the esti-
mation of conductances and have obtained a clear conclu-
sion: the estimation of conductances is only reliable if
based upon intracellular measurements when intrinsic
(spike-generating) currents are negligibly small. Frequently
in the literature, the validity of these methods of estimation
is based upon a comparison of the estimated effective rever-
sal potential and the actual filtered potential; that is, the
agreement of these two potentials is taken to indicate that
the estimates of the conductances will be accurate. How-
ever, our analysis further shows that, in fact, this does
not follow. As shown in row B of Figs. 6 and 7, one fre-
quently has agreement between the estimated reversal
potential and the actual filtered potential, and yet no accu-
racy in the estimates of the conductances.

To understand this, notice that in (3) we are estimating
Vg directly, while g, is estimated through its inverse.
Then, if we have an absolute error ¢ in the estimation of
Ve, the relative error (the proper measure because our
plots have the scale determined by their magnitudes) will
be €/V.z approximately. Since |V.g| is typically around
60-70 mV, the relative error is reduced with respect to

the absolute error between 1 and 2 orders of magnitude.
On the other hand, if we have the same error in estimating
1/gT, then the absolute error in estimating gt is of the order
of eg2. When the conductances are high (as they are in
visual cortex under high contrast stimulation), the error
is amplified. Quantitative measures of these errors in the
numerical simulations have confirmed a good performance
for the estimation of Vg (less than 5% error) and dramatic
errors (more than 100% in the presence of intrinsic conduc-
tances) for the estimation of the gy, gg and g (see again
Figs. 6 and 7 and Section 3.3).

Accurate estimates of the excitatory and inhibitory con-
ductances can provide significant information about the
wiring architecture of the cortex. For example, in Ander-
son et al. (2000) these methods are used to estimate the
excitatory and inhibitory conductances, and the results
are interpreted as supporting antagonism between excita-
tion and inhibition which, in turn, is interpreted as sup-
porting a phase selective wiring architecture. However,
careful inspection of their data in Fig. 16 of Anderson
et al. (2000) shows that this antagonism is only present
when the neuron is spiking, that is where the estimates
are inaccurate. On the other hand, in regions when the neu-
ron is not spiking, (where the estimation method is
expected to be accurate) the same data shows an elevation
of both the excitatory and inhibitory conductances — an ele-
vation which is consistent with a phase insensitive wiring
architecture. In conclusion, we think that an interpretation
of the measurements done in Anderson et al. (2000), when
correctly restricted to non-spiking regimes, confirms some
of the predictions derived from the phase insensitive
assumption rather than those derived from the hypothesis
of spatial phase selective coupling.

Accurate robust measurements of the excitatory and
inhibitory conductances would greatly enhance our under-
standing of cortical architecture, mechanisms, and func-
tion. Thus, it would be important to extend these
estimation methods to regions where the current-voltage
relation is nonlinear — regions with spiking, with significant
intrinsic currents, with significant stochasticity, with ionic
currents, and/or with the presence of other potential
sources of nonlinearity such as dendritic activity or dis-
tance effects. Stochasticity is treated by the methods of
Rudolph and Destexhe (2003) and Rudolph et al. (2004).
But extensions to nonlinear regions in the presence of sig-
nificant ionic currents remain open. A good starting point
could begin from specific neuronal models, analyzed with
bifurcation methods from dynamical systems theory.

Finally, we would like to highlight the most important
messages from this paper:

o Estimations obtained from intracellular measurements
by filtering the signal and performing linear regressions
of the I,pp—vg), relationships should be carried out only
in non-spiking situations.

e When the cells are spiking, one can expect errors on
average that exceed 100% (see for instance Fig. 6, rows



A. Guillamon et al. | Journal of Physiology - Paris 100 (2006) 31-42 41

C-E). Moreover, even the polarity of the inhibitory con-
ductance time course can be mis-estimated (see row E in
Fig. 6).

e To be able to estimate conductances from spiking mea-
surements, a challenging problem is to determine the
best (nonlinear) fit for the /,,,—vs) curves. Stochasticity,
as shown in Fig. 5D, can further reshape this nonlinear
Lypp—s1; CUIVE.
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Appendix A. Filtering

See Fig. 8 to illustrate this discussion.

A good filter for real data (or realistic data, like those
for the stochastic conductance input) is the median among
neighboring values of the membrane potential, as used in
Jagadeesh et al. (1997). The number of values we use in
computing the median will depend on the availability of
data in experimental records (recording time step) and on
the integration step in computational simulations (for the
sake of simplicity, we assume that the filtering is performed
using constant time steps and Az denotes the distance
between neighboring time points.). As in Anderson et al.
(2000) and Jagadeesh et al. (1997), we can filter v,,(¢*) with
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Fig. 8. Median and Gaussian low-pass filters for the HH model. In the first row, we show how the median filter applied to realistic data like stochastic
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Umed (£7) := median{v, (¢ + kAf);k = —10,...,10, Az
= 0.25 ms}, (5)

which means a median in a 5 ms window around the fil-
tered point. This filter clips an isolated spike because the
spike duration is about 1/5 of such a window and this en-
sures that the median will not be a depolarizing value but a
value closer to the baseline membrane potential.

Nevertheless, if the spikes are not isolated or bursting is
present, the nice properties of the median filter are lost. In
our simulations, this fact mainly happens for the smooth
conductance input, and is the reason to consider also Gauss-
ian filters. For periodic spiking, however, when Az is a mul-
tiple of the interspike interval (ISI), the peaks of the
potential cannot be removed. Even if the sampling period
and interspike interval are not commensurate the filtered
potential can still be jittery. This happens in some of the
plots of Fig. 6, and we have not been able to remove the
jittering. Perhaps, using a variable filter would solve
the problem but this is not such a crucial point and we
do not pursue such refinements here.

For the Gaussian filtering, we have used:

* 1 ! —(kA?)? /2
UGauss () = ovi Z o (kAN /a* (6)
k=—1

The choices of ¢ and [ are related: the smaller o, the smaller
[. In our simulations, after / was fixed (width of the win-
dow), then ¢ was chosen heuristically.

Finally, we would like to point out that another natural
filter to avoid the above problems could be the averaged
potential, (v)(t), defined as the interspike average. It is easy
to apply for inputs that give regular spiking (like that of the
smooth conductance input) but useless for noisier activities
like those of the stochastic conductance input.

Appendix B. Normalization of currents

The choice of the injected currents that we apply to our
cells (1,pp between —1 and 1) is also important. We adapt
our injected currents to those used in Anderson et al.
(2000). In Fig. 4 of Anderson et al. (2000), the authors
determine the linear regressions apparently using only 3
currents. For Cell 8, the currents (pA) are given by Ander-
son (personal communication):

{-300, —260, —200, — 140, —100, —60, 0, 120}.

From Table 1 in Anderson et al. (2000) the cell’s mem-
brane time constant is 7, = 17.3 ms. If C, = 1 pF/cm? we
compute the leakage conductance as

g, = S = 0.057803 mS /em?.

m

Since the input resistance is R, = 56 MQ we approximate
the effective membrane area:

1

Lf'm

= 0.0003089286 cm”.

Acell ~

We use this factor to convert current units from absolute
to per unit area as in our Eq. (1). In pA/cm?, then, the
set of values used in for regression in Anderson et al.
(2000) is

{—0.971,-0.842, —0.647, —0.453, —0.324, —0.194, 0,0.388}.

However, as can be appreciated in Fig. 3 of Anderson
et al. (2000), these currents from —300 pA to 140 pA assure
that their Cell 8 is sometimes spiking. Estimates for some
synaptic conductances come from the mixed regime and
therefore are susceptible to the inaccuracies that our paper
addresses.
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