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An egalitarian network model for the emergence of
simple and complex cells in visual cortex
Louis Tao*, Michael Shelley†, David McLaughlin, and Robert Shapley

Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10027; and Center for Neural Science, New York
University, 4 Washington Place, New York, NY 10003

Contributed by David McLaughlin, October 6, 2003

We explain how simple and complex cells arise in a large-scale
neuronal network model of the primary visual cortex of the macaque.
Our model consists of �4,000 integrate-and-fire, conductance-based
point neurons, representing the cells in a small, 1-mm2 patch of an
input layer of the primary visual cortex. In the model the local
connections are isotropic and nonspecific, and convergent input from
the lateral geniculate nucleus confers cortical cells with orientation
and spatial phase preference. The balance between lateral connec-
tions and lateral geniculate nucleus drive determines whether indi-
vidual neurons in this recurrent circuit are simple or complex. The
model reproduces qualitatively the experimentally observed distri-
butions of both extracellular and intracellular measures of simple and
complex response.

spatial summation � computational models

A fundamental classification of neurons in the primary visual
cortex (V1) is as simple or complex (1). A simple cell

responds to visual stimulation in an approximately linear fash-
ion. For example, when responding to the temporal modulation
of standing grating patterns, simple cells modulate their firing at
the stimulus frequency and are sensitive to its spatial phase (or
location). Complex cells are very nonlinear, modulating their
firing at twice the stimulus frequency and showing little sensi-
tivity to spatial phase.

Simple and complex cells may have different tasks in visual
perception. Cortical cells must represent spatial properties such as
surface brightness and color and the perceptual spatial organization
of a scene that is the basis of form. Simple cells are necessary for
all of these functions because they are the visual cortical neurons
that are able to respond monotonically to signed edge contrast.
Complex cells, being insensitive to spatial phase, cannot provide a
cortical representation of signed contrast, but they are sensitive to
texture, firing at elevated rates in response to stimuli within their
receptive fields.

Although long-standing and with functional implications, the
simple�complex classification is hardly sharp. Recent work by
Ringach et al. (2) analyzes the extracellular responses of neurons
across many experiments in macaque V1. They find that many V1
cells are neither wholly simple nor wholly complex but lie some-
where in between. And although most cells in V1 might be classified
as complex, the cortical layer that receives the bulk of lateral
geniculate nucleus (LGN) excitation, 4C, has simple and complex
cells in approximately equal proportion.

Associated with the simple�complex classification is the influ-
ential hierarchical model of Hubel and Wiesel (1), shown schemat-
ically in Fig. 1a, wherein simple cells receive geniculate drive and
the pooling of their phase-specific outputs drives the phase invariant
responses of complex cells. As we argue in Results, this conception
seems difficult to reconcile with recent experimental evidence.
Chance, Nelson, and Abbott (3) have put forward a very different
model that investigates the possible role of recurrent excitation in
creating complex cells. In their model, the phase-specific outputs of
excitatory simple cells drive cells coupled together in an excitatory
recurrent network (Fig. 1b). Realizing this architecture by using a
rate model for network activity, they find phase invariant, complex

responses when recurrent excitation in the network dominates that
of the simple cell inputs.

Here, we study a large-scale model of the neuronal dynamics in
layer 4C� of macaque V1, whose architecture is known better than
for almost any other cortical area. Our model is egalitarian, in the
sense that all neurons interact with each other at the same level,
with local lateral connectivity being nonspecific and isotropic (Fig.
1c). Previously, we showed how strong network inhibition in a
cortical network model could ameliorate the nonlinearities of LGN
excitation, and so give rise to a network of simple cells (4). That
work also showed that cortico-cortical excitatory conductances
resembled the spiking responses of complex cells. Such complex-
like responses in membrane conductances of simple cells is con-
sistent with in vivo voltage-clamp measurements made by Borg-
Graham et al. (5) in cat cortical cells after flashed bar stimulation.

Building on this observation, our model cortex naturally pro-
duces simple cells, complex cells, and cells with intermediate
responses. Although strong cortico-cortical inhibition remains an
important feature, a central assumption of this model is that the
strength of LGN excitation varies broadly, so that some cortical cells
receive significant LGN drive, whereas others receive little. This is
combined with the constraint that the total excitatory synaptic drive
onto each cell is approximately constant, although divided between
geniculate and striate sources, as is suggested by theories of cortical
development (6, 7) and by recent experiments (8). Through a
balance of strong recurrent excitation and inhibition this model
yields complex responses in those cells with relatively little LGN
drive. Simple cells arise in a manner similar to those of the earlier
Wielaard et al. model (4).

The aim of our modeling is to understand the function of the V1
cortical network in terms of network connectivity and dynamics.
Thus to be successful, the model must account in a realistic manner
for orientation selectivity, response dynamics with a wide range of
input stimuli, firing rate patterns in background, as well as during
stimulation. All of these aspects of the egalitarian model’s perfor-
mance will be reported elsewhere. In this article, we focus on the
model’s performance in spatial summation experiments that have
been used to classify neurons as simple or complex. We show that
this egalitarian model, which combines natural assumptions on the
variability of cortical and geniculate drive and what is known about
the neuronal architecture of V1, can rationalize many aspects of the
available experimental data. The model yields physiologically rea-
sonable simple and complex cell responses, both in the rate and the
form of spiking. The architecture leads to distinctive predictions of
population measures of simple�complex responses, which have the
qualitative structure seen in recent experimental measurements.
Our work here may prove important for understanding the roles of
network excitation and inhibition in other cortical areas.

Abbreviation: LGN, lateral geniculate nucleus.
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Methods
Our model cortex consists of �4,000 coupled excitatory and
inhibitory integrate-and-fire point neurons, whose intracellular
potentials follow:

d� j

dt
� � gL�� j � VL� � g E

j �t��� j � VE� � g I
j�t��� j � VI�

� � g T
j �t��� j � V S

j �t��. [1]

where gL is the leak conductance; gE
j (t) and g I

j(t) are the excitatory
and inhibitory conductances, respectively. Here, the conductances
have been normalized by the membrane capacitance, leaving them
with dimensions of inverse time (e.g., gL � 50 sec�1). VL, VE, and
VI are the rest, excitatory, and inhibitory reversal potentials, re-
spectively. In integrate-and-fire dynamics, when the membrane
potential hits a threshold, VT, a spike is recorded and vj is instan-

taneously reset to VL. An action potential is associated with a spike
time and conductance changes are then distributed throughout the
network. Potentials are nondimensional with VT � 1, VL � 0, and
by using the commonly accepted values for the various biophysical
parameters (9), VE � 4.67, VI � �0.67. In Eq. 1, gT � gL � gE

j �
g I

j is the total membrane conductance and VS
j � (VEgE

j � VIgI
j)�gT

j

is the effective (time-dependent) reversal potential. We use a
modified fourth-order Runge–Kutta method (10) with 0.1-ms time
steps.

To close the model, we need to specify gE
j and g I

j . In short, these
conductances are produced by firing activity within the model
cortex, from spikes arriving from the LGN, and from spiking of
extracortical sources. A major part of the connectivity is described
through Fig. 2 and its explication in Results, and many further details
are given in Supporting Text, which is published as supporting
information on the PNAS web site.

Results
Contrast Reversal and Spatial Phase Dependence. Contrast reversal is
the sinusoidal modulation in time of the contrast of a standing
sine-wave pattern. Response to contrast reversal is a critical test of
linearity in simple cells (11, 12). A simple cell’s response depends
strongly on the spatial phase or position of the standing grating
pattern relative to the midpoint of the neuron’s receptive field and
has a large amplitude response at the fundamental driving fre-
quency at one spatial phase (the ‘‘preferred phase’’) and very little
response at the ‘‘orthogonal phase,’’ 90° away. Response at both of
these phases shows little or no generation of the higher temporal
harmonics that might be expected for a nonlinear system. On the
other hand, nonlinear harmonic distortion products are apparent in
the responses of cortical complex cells (11): their temporal re-
sponses show little sensitivity to spatial phase, and firing modulates
at twice the stimulus frequency (i.e., at the second harmonic).

Simple and complex cell responses, like those seen in experiment,

Fig. 1. Schematics of models for complex cells. (a) The hierarchical model of
Hubel and Wiesel (1), wherein the summed output of simple cells drives complex
cells. (b) The recurrent excitation model of Chance et al. (3). (c) The present
egalitarian model where simple and complex cells coexist within a common
circuit. The simple cell model of Wielaard et al. (4) is represented by the portion
of the schematic below the dashed line. In the first two models, LGN excitation
arrives through the simple cells, which then drive the complex cells. In the model
discussed here, LGN excitation arrives with varying strength throughout the
network, with this strength represented by the arrows on the right of the
schematic.

Fig. 2. Schematic of model. (Upper) Inputs
from visual stimulation are relayed through
the LGN. Each V1 cell ‘‘sees’’ a collection of
LGN cells that is probabilistically sampled
from a 2D Gabor function. The segregation
of convergent on- and off-center LGN cells
(representedbyredandgreencircles) confers
orientation and spatial phase preference on
individual cortical cells; these preferences are
inherited from parameters of individual Ga-
bor functions. Orientation preference is laid
out in pinwheels (map shown in color), and
spatial phase preference is distributed ran-
domly (map not shown, but individual phase
preferences are shown for three sample neu-
rons). The number of LGN cells (Ni) providing
afferents varies from cell to cell (shown for
sample neurons) and is distributed randomly
in cortex (uniformly between 0 and 30). The
firing rates of individual LGN cells are mod-
eled as inhomogeneous Poisson processes
with rates that are taken from a thresholded,
linear spatio-temporal filter (as detailed in
refs. 4 and 29). (Lower Left) Intracortical cou-
plings are isotropic with interaction profiles
taken to be Gaussians in space (excitation in
red and inhibition in blue), with the length
scale of excitation (200 �m) greater than that
of inhibition (100 �m). Inhibitory coupling
strengths are taken randomly from a Gauss-
ian distribution, whereas excitatory coupling
strengths are drawn from Gaussian distributions whose mean strengths are inversely proportional to Ni. The extra 4C� conductances have strengths that are also drawn
randomly from Gaussian distributions. (Lower Right) Each cortico-cortical excitatory postsynaptic potential is taken to be 50% �-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) and 50% N-methyl-D-aspartate (NMDA), whereas an inhibitory postsynaptic potential is divided evenly between �-aminobutyric acid
type A (GABAA) and a slower inhibition [based on recent experimental findings of Gibson et al. (39)].
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arise in our model cortex. For contrast reversal stimulation, Fig. 3a
shows a model cell responding like a simple cell, and Fig. 3b shows
another cell responding like a complex cell. These are but two cells
taken from a large-scale network simulation with �4,000 cells (75%
excitatory, 25% inhibitory). The architecture of this network is
presented schematically in Fig. 2. Some of the crucial distinguishing
features of the model, derived from biological data, are that the
local lateral connectivity is nonspecific and isotropic, with lateral
monosynaptic inhibition acting at shorter length scales than exci-
tation (13–16). Orientation and spatial phase preferences are
conferred on cortical cells from the convergence of output from
many LGN cells (17), with orientation preference laid out in
pinwheel patterns (18–21), and spatial phase preference varying
widely from cortical cell to cortical cell (22).

As Fig. 2 also indicates, the number of LGN cells, NLGN, whose
afferents impinge on a model cortical cell varies broadly and
randomly from cortical cell to cortical cell. Much of the evidence for
variability in the strength of LGN drive is indirect (23–25), and so
for the purposes of this study, we make the simplest assumption and
take the distribution of NLGN to be uniform. We have found that
changing the precise form of this distribution does not qualitatively
change our results. A model simple cell like the cell depicted in Fig.
3a has a nearly maximal number of LGN afferents (conceptually,
neuron 1 in the schematic), whereas a complex cell (like the one in
Fig. 3b) has few LGN afferents (conceptually neuron 3 in the
schematic). Fig. 4 shows the model simple cell’s instantaneous and
cycle-averaged intracellular conductances and effective reversal

potential VS (both normalized as described in Methods) at the
preferred and orthogonal phases of contrast reversal, over one cycle
of stimulation. [In our network, the membrane time scale is very
short (26), and hence the intracellular potential closely tracks VS
when below the firing threshold, here normalized to unity. When VS
is above unity, the cell is typically firing.] At the preferred phase, the
excitatory conductance from the LGN is a rectified sinusoidal wave
peaking at three-quarters cycle, whereas at orthogonal phase the
LGN excitation is frequency doubled. The latter arises when a zero
contrast phase line of the stimulus lies across a segregated subregion
of off- or on-centered LGN cells. The stimulus then excites these
LGN cells twice in a period, first on one side of the phase line, then
on the other, which when combined with the simultaneous firing
rectification occurring in LGN cells on the opposing side, yields a
frequency doubling (4). Likewise, the rectification nonlinearities of
individual LGN cells also yield the half-wave rectified response at
the preferred phase. Not shown is the response to the stimulus
phase 180° away from the preferred, for which the LGN excitation
is nearly identical but peaking instead at one-quarter cycle. Inter-
mediate phases of stimulation appear as combinations of these
half-wave rectified and frequency doubled wave forms [see figure
2 of Wielaard et al. (4)].

As the spatial phase preference conferred by the LGN drive
varies widely from cortical cell to cortical cell, a stimulus phase that
is preferred for one cortical cell will for other cells be at preferred,
orthogonal, or intermediate phases. For cells with fewer LGN
afferents than our model simple cell, all of these basic wave forms
of LGN excitation persist, but are diminished in magnitude. An
extreme example of this is the sample complex cell, whose intra-
cellular responses are shown in Fig. 4c at the first phase presented
in Fig. 3b. This cell has no LGN afferents, and hence no LGN
excitation.

Thus, because of the diverse nature of its LGN input, particularly
in input phases, the model cortex receives an LGN excitation that
for some cells is peaked in the first-half period of stimulation, is
peaked in the second half for others, and for yet others is peaked
in both halves (i.e., stimulus is at F2). Consequently, the bulk visual
excitation, LGN excitation averaged over all cells, peaks in both
halves of the period of stimulation and is insensitive to phase. In a
network that is isotropically and nonspecifically coupled, a cell
samples through its cortico-cortical conductances the activity of
many other cells, each excited by the LGN at a different input
phase. A natural consequence is that these conductances reflect the
bulk forcing and so are frequency doubled and phase insensitive.
This is illustrated in Fig. 4. Both the inhibitory and excitatory
cortico-cortical conductances of the simple cell are frequency
doubled and practically identical at the two phases shown, as indeed
they are also for the other intermediate phases. These observations
hold true for the cortico-cortical conductances of the complex cell.
Examination at all of its phases of response would show near
invariance to phase and frequency doubling.

Tradeoff Between LGN and Cortico-Cortical Input. Phase insensitivity
and frequency doubling are key to how this network produces both
simple and complex cells. For example, Fig. 4b shows that LGN
excitation is frequency doubled at the orthogonal phase, yet this
strong nonlinearity in the LGN input is not expressed in the spiking
of the cell. As explained in Wielaard et al. (4), if excitation and
cortico-cortical inhibition are roughly in balance, phase-insensitive
cortico-cortical inhibition is sufficient to suppress frequency-
doubled firing at the orthogonal phase.

Another structural element of the model network is indicated in
Fig. 2. The number of excitatory, LGN afferents driving a cortical
cell is inversely correlated to the number of excitatory cortico-
cortical afferents. That is, the fewer synapses on a cell taken up by
the LGN, the more are available to excitatory (presynaptic) neurons
in the network. This assumption is based on theories of cortical
development in which the number of excitatory synapses is kept

Fig. 3. Responses from model neurons to contrast reversal stimulation (eight
spatial phases, at optimal orientation, and temporal and spatial frequency).
Shown are predicted responses from a simple (a) and a complex (b) neuron in the
model network. (a) Model network simple cell driven at 4 Hz. The spatial phase
is defined so that one spatial cycle of the grating pattern is 360°. At 180°, the
response is zero. (b) Model network complex cell driven at 4 Hz. The response is
at the second harmonic and is insensitive to spatial phase.
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constant (6, 7) [recent experiments support this theoretical con-
straint (8)]. The consequences of this assumption are made clear in
Fig. 4c. For the complex cell, the lack of LGN excitation is
compensated for by a strong, frequency-doubled cortico-cortical
excitation, balanced by likewise frequency-doubled inhibition. The
firing pattern of the cell is then naturally frequency-doubled and
phase insensitive, as is observed for complex cells.

Slow and Fast Excitation. Fig. 2 also illustrates that we use slow
excitation in the synapses between cortical cells (see temporal
coupling profiles). The total excitatory postsynaptic potential was
the sum of an �-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA) component and a N-methyl-D-aspartate (NMDA)
component (27) with equal weight integrated over time. We found
that, in networks where the cortical coupling is mediated only by
AMPA, the strong cortical amplification led to large-amplitude

global oscillations. The slow excitation provided by NMDA was
necessary to achieve stability in the recurrent network (28). An-
other feature of this model that differentiates it from Wielaard et
al. (4) is the presence of a global inhibition and excitation that is
modulated by total network activity. This global coupling could be
interpreted, for example, as being mediated through layer 6 feed-
back to layer 4C, and does not affect simple�complex population
responses. Its main effect is to improve orientation selectivity within
the layer and to remove some of the differences in network activity
near and far from the pinwheel centers of orientation hypercolumns
[ref. 29; see Kang et al. (30) for a recent study of mechanisms
underlying neuronal activity patterns in models of the cortical
layer].

Drifting Grating Responses. Another common visual stimulus used
to classify the response properties of cortical neurons is drifting

Fig. 4. Extracellular and intracellular responses to 4-Hz contrast reversal. (a
and b) The model simple cell in Fig. 3a responding at its preferred and
orthogonal spatial phases. (c) The model complex cell in Fig. 3b at one of the
phases. From left to right: cycle-averaged firing rate (with the spontaneous
rate in red dashes); effective reversal potential VS (magenta); LGN-driven
conductance (green); cortico-cortical excitatory conductance (red); cortico-
cortical inhibitory conductance (blue). Dotted lines are standard deviations
for each of the conductances and for the potential. Thin black lines indicate
instantaneous values of conductances and potentials. Cycle averages are
performed over 24 cycles.

Fig. 5. Responses to 8-Hz drifting grating at optimal orientation. (a) The
model simple cell in Fig. 3a. (b) The model complex cell in Fig. 3b. From left to
right: cycle-averaged firing rates (spontaneous rates as dashed red lines);
effective reversal potential VS (magenta); LGN-driven conductance (green);
cortico-cortical excitatory conductance (red); cortico-cortical inhibitory con-
ductance (blue). The dotted lines are standard deviations for each of the
conductances and for the potential. The thin black lines indicate instanta-
neous values of conductances and potentials. Cycle averages are performed
over 48 cycles.
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sinusoidal gratings (a traveling, spatially modulated intensity pat-
tern, held at a fixed orientation). Although often used to probe
selectivities for orientation, frequency, or direction, this stimulus
also shows characteristic differences between simple and complex
cells. For the model simple and complex cells of Figs. 3 and 4, Fig.
5 shows their extracellular and intracellular responses to a drifting
grating stimulus (8 Hz at optimal orientation and spatial fre-
quency). Their extracellular spiking is typical of experimentally
observed simple and complex cells. The simple cell follows the
temporal modulation of the drifting grating as it moves across its

receptive field, whereas the complex cell shows an elevated, mostly
unmodulated firing over the whole cycle of stimulation.

Examination of LGN and cortico-cortical conductances in Fig. 5
accounts for the model’s response to drifting gratings. First, the
strong LGN excitation into the simple cell modulates with the
stimulus frequency. Different cells receive LGN excitation of
similar wave form, but because of variability in both the number of
LGN afferents and in spatial phase preference, they are diverse in
both amplitude and time of peak excitation. For drifting grating
stimulation, this yields a bulk forcing to the model cortex that is
nearly uniform in time and manifests itself as nearly time-invariant
cortico-cortical conductances (4). Thus, for the model simple cell,
both the intracellular VS and its extracellular firing pattern modu-
late on the time dependence of its LGN input. Conversely, for the
model complex cell both VS and the firing pattern are driven by the
unmodulated cortico-cortical conductances, and hence show only
elevated, unmodulated responses.

Population Distributions of Modulation Ratio. Given the structure of
the model cortex, it is clear that our two sample cells, one simple
and one complex, must sit within a continuum of possible intra-
cellular and extracellular responses. We explore this with a standard
characterization of response. Fig. 6a shows the histogram of mod-
ulation ratio F1�F0 for the cycle-averaged effective reversal poten-
tial, VS, across the whole population of �3,000 excitatory cells
within the model cortex. The modulation ratio is the ratio of first
harmonic amplitude (at the stimulus frequency) to the mean. Cells
with flat intracellular responses, like the sample complex cell in Fig.
5b, have small modulation ratios. The distribution of modulation
ratio is broad, unimodal, and monotonically decreasing and reflects
the broad distribution in the number of LGN afferents and the
constraint of fixed, total excitation. In recent unpublished work,
David Ferster and colleagues (personal communication) measured
the modulation ratio of the intracellular potential for 168 cells in cat
cortex (see figure 11 of ref. 31 for an analysis on a much smaller set
of cat V1 cells). Like our model here, their measurements show also
a broad and unimodal distribution of intracellular F1�F0.

Curiously, this unimodality is not preserved in extracellular
measures, neither in experiment nor in the model. Fig. 6b shows for
the model cortex the distribution of modulation ratio of the
cycle-averaged firing rate, and Fig. 6c shows the measured distri-

Fig. 6. Acomparisonof intracellularandextracellularF1�F0 betweenmodeland
experiment. (a) Distribution of F1�F0 of membrane potential (relative to back-
ground activity) of excitatory neurons in model network, when stimulated at
optimal orientation and spatial frequency. The height of each bar indicates the
total number of excitatory neurons in each bin, and the blue and red portions
correspond to the cells that are classified as simple or complex based on their
extracellular responses. (b)Distributionof themodulationratioF1�F0 of thefiring
rate for excitatory neurons in model network. (The distribution for the inhibitory
population is qualitatively similar.) For these two distributions, only cells with
mean rates �8 spikes per s are included. (c) Distribution of the modulation ratio
F1�F0 of the firing rate for 308 cells (complex cells, n � 184; simple cells, n � 124)
from the experiments of Ringach et al. (2). The detail shows the distribution for
the 38 cells identified as being in 4C. Here, with a baseline of zero firing rate, the
modulation ratio is bounded between zero and two.

Fig. 7. Time-averaged conductances as a function of the modulation index
F1�F0 of the firing rate. Green is LGN-driven conductance, red is cortico-cortical
excitation, blue is cortico-cortical inhibition, and black is total conductance. Each
point is computed by finding the population of neurons within a certain range in
F1�F0 and then averaging (over the population and over time). The vertical bars
at each point denote the population average of the standard deviation.
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butions from Ringach et al. (2) for 308 cells in macaque V1 and for
the 38 located in 4C. Following others (e.g., refs. 2 and 32), we
use this extracellular F1�F0 as a classifier, labeling as simple those
cells with F1�F0 � 1 (red in Fig. 6b), and as complex those with
F1�F0 � 1 (blue in Fig. 6b). Qualitatively similar, both distributions
show a bimodal structure peaked near the extremes of the classifier
but with a large proportion of cells having responses that are neither
wholly simple nor wholly complex.

On the basis of a simple model, Mechler and Ringach (33) have
recently shown that spike-rate rectification could lead to a bimodal
distribution in extracellular F1�F0, even though intracellular re-
sponse is unimodally distributed (see also ref. 34). Our work here
shows that this result can arise within a cortical model that
incorporates many elements that are biologically realistic. For our
model, we note that the form of the intracellular and extracellular
F1�F0 distributions changed little when the uniform distribution
used for NLGN, the number of LGN afferents impinging on a model
cortical cell, was replaced by a Gaussian distribution whose stan-
dard deviation was half its mean. When the NLGN distribution was
made strictly bimodal (half the cortical cells receiving LGN exci-
tation and half receiving none at all), this created an extracellular
F1�F0 distribution with a greater population of complex cells as seen
in Fig. 6c, but also a plainly bimodal intracellular distribution.

For the drifting grating stimulus, Fig. 7 shows how membrane
conductances relate to extracellular F1�F0. First, as expected, the
simpler a cell, the stronger its LGN excitation, but it is also true that
even very simple cells can receive substantial network excitation.
Second, it is clear that LGN and cortico-cortical excitation are
generally anticorrelated, with very complex cells receiving almost
exclusively cortical excitation. The cortico-cortical inhibition is
large and is much more uniform than excitation with respect to
F1�F0. Finally, across the whole population note that the total
conductance is large and is dominated by inhibition [as in Wielaard
et al. (4)]. Large inhibitory conductances have been found in recent
intracellular measurements (35–37), and their effect on cortical
function has been studied theoretically (26).

Discussion
The following are the main results of this article. We have con-
structed a cortical model, based on macaque V1, for the emergence
of simple and complex cells within the same basic circuit. Their
differing responses reflect differing proportions of geniculate ver-
sus cortico-cortical excitation. Although the amount of excitation is
kept roughly fixed, its division varies widely from cell to cell, as do
many other elements of the model, such as strength of coupling and
extracortical drive, and the receptive field properties of convergent
LGN excitation. In a manner consistent with experiment measure-

ment, many cells emerge as complex, many as simple, and many as
being mixed. We predict a bimodal but broad structure of extra-
cellular modulation ratio, itself arising from a distribution of
intracellular modulation ratios that is broad but monotonic. This
prediction is consistent with available data.

Our model is very different from the influential hierarchical
model of Hubel and Wiesel (1), wherein simple cells receive
geniculate drive and their pooled output drives the complex cells.
Clearly, a strict rendering of the Hubel and Wiesel model would
yield a bimodal population response in both the extracellular and
intracellular modulation ratio, as is not observed here, nor in
experiment. Our model is more egalitarian than hierarchical, with
all cell types receiving strong inputs from the network of both
simple and complex cells (see Fig. 7) and with almost all cells
receiving LGN drive.

Although our model is motivated by an interpretation of ma-
caque V1 cortical architecture (4, 29) and instantiated in a large-
scale computational model with spiking neurons, it shares impor-
tant features with the modeling of Chance et al. (3). As in Chance
et al., recurrent excitation plays a central role in creating complex
cell responses. However, in our model recurrent excitation does not
so much play the role of yielding phase invariant responses, as in
Chance et al., but rather in yielding sufficiently high, physiologically
reasonable firing rates for complex cells that are also being inhib-
ited. Phase invariance is built into the complex cell’s total synaptic
input by summing over both complex cells and simple cells non-
specifically. In an elaboration of their basic model, Chance et al. also
demonstrated that a mixed population of simple, complex, and
intermediate cells could be found by randomly varying the strength
of connectivity to the model cortical network.

A crucial feature of our model is cortico-cortical inhibition.
Cortical inhibition allows the possibility of nearly linear, simple cell
responses in the network, even when driven by LGN cells with their
attendant rectification nonlinearities (4).

Finally, we have emphasized in this work the form of the model’s
cycle- or time-averaged responses. However, examination of Figs. 4
and 5 shows that instantaneous values of VS and the conductances
are strongly fluctuating, with the mean VS mostly below, or barely
above, the threshold to firing. Clearly, fluctuations are important to
creating the network state, and as argued in ref. 26, are important
to yielding smoothly graded average responses (see also ref. 38).
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