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Modeling the spatiotemporal cortical activity
associated with the line-motion illusion

in primary visual cortex
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*Courant Institute of Mathematical Sciences and *Center for Neural Science, New York University, New York, NY 10012
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Contributed by David W. McLaughlin, November 2, 2005

Our large-scale computational model of the primary visual cortex
that incorporates orientation-specific, long-range couplings with
slow NMDA conductances operates in a fluctuating dynamic state
of intermittent desuppression (IDS), which captures the behavior
of coherent spontaneous cortical activity, as revealed by in vivo
optical imaging based on voltage-sensitive dyes. Here, we address
the functional significance of the IDS cortical operating points by
investigating our model cortex response to the Hikosaka line-
motion illusion (LMI) stimulus—a cue of a quickly flashed station-
ary square followed a few milliseconds later by a stationary bar. As
revealed by voltage-sensitive dye imaging, there is an intriguing
similarity between the cortical spatiotemporal activity in response
to (/) the Hikosaka LMI stimulus and (ii) a small moving square. This
similarity is believed to be associated with the preattentive illusory
motion perception. Our numerical cortex produces similar spatio-
temporal patterns in response to the two stimuli above, which are
both in very good agreement with experimental results. The
essential network mechanisms underpinning the LMl phenomenon
in our model are (i) the spatiotemporal structure of the LMI input
as sculpted by the lateral geniculate nucleus, (ii) a priming effect of
the long-range NMDA-type cortical coupling, and (iii) the NMDA
conductance-voltage correlation manifested in the IDS state. This
mechanism in our model cortex, in turn, suggests a physiological
underpinning for the LMI-associated patterns in the visual cortex
of anaesthetized cat.

cortical architecture | cortical operating point | lateral connections

Ithough it is an age-old wisdom, our perception of the world

is clearly a partial reflection of our own state of mind.
Recent advances in large-scale and multimode experimental
methods in neuroscience, such as in vivo optical imaging based
on voltage-sensitive dyes (VSD), have produced highly resolved,
beautiful spatiotemporal images of intrinsic cortical states, and
they have afforded us a glimpse, however fleeting, into the inner
workings of the brain. Armed with the plethora of data accu-
mulated over the last few decades about the primary visual
cortex (V1), it is now possible to begin to address fundamental
questions, such as how incoming visual information might be
affected by intrinsic cortical states, leading to perception or
illusory perception.

The intrinsic spontaneous ongoing spatiotemporal activity of
V1 as revealed by VSD imaging exhibits intricate coherent
behavior, not that of unstructured homogeneous noise (1-3).
Cortical regions separated by up to 4 mm can exhibit correlated
patterns, which are observed to drift with the characteristic time
scale ~80 ms. Intriguingly, these fluctuating spontaneous pat-
terns often resemble patterns of cortical activity that are evoked
by certain visual stimulation, with the spontaneous firing rate of
individual neurons highest when within a wandering cortical
state that resembles a state evoked by optimal stimuli for those
neurons.

www.pnas.org/cgi/doi/10.1073/pnas.0509481102

These spatiotemporal activity patterns can be viewed as
high-dimensional projections of the full network dynamics, and
they carry information that may not be discernable by analyzing
very low-dimensional projections of the full dynamics via only a
few individual neurons within the same system. Dynamic func-
tional information about the cortex can be encoded in spatio-
temporal patterns of cortical activity. For instance, spatiotem-
poral cortical activity can reveal oscillations, correlations, or
distinct spiking patterns in specific neuronal ensembles over
large spatial distances. Spatiotemporal activity recordings can
capture the collective behavior of neuronal ensembles and
potentially discriminate between competing theoretical cortical
mechanisms, a discrimination that may not be possible when
measuring only a single neuron within a large system.

Previous theoretical work has attempted to characterize the
spontaneous background state, a “cortical operating point,” as
an attractor of a dynamical system: a long-time state adopted in
the absence of stimulus. For example, the “marginal state
attractor” (4) only allows for a single low-dimensional mode to
be active in the cortex at any given time, with the external input
merely pushing the cortex into a specific one of these marginal
(broken-symmetry) states. Similar low-dimensional attractors
have been invoked to model the highly excited cortical behavior
implied by visual hallucinations (5, 6). These low-dimensional
attractors strongly restrict the possible modes of the model
cortex. However, experimental observations show that different
spatial regions of V1 can simultaneously sustain competing
patterns over long time scales (=80 ms) (1-3).

In contrast, our previous work (7) reveals how the cortex may
operate in a more general type of cortical operating point, one
which is intrinsically stochastic and allows for coherent spatio-
temporal fluctuations. Our model cortex, with orientation-
specific, long-range (LR) lateral connections® containing a slow
(NMDA-type) excitatory component, countered by strong local
cortical inhibition, achieves a fluctuating dynamic regime of
intermittent desuppression (IDS) (7) with physiologically rea-
sonable correlations between conductance, voltage, and realistic
spontaneous firing rates (=5 spikes per s). This IDS state is in
an intermittent cycle: (i) the eventual decay of cortical inhibition
permits a few spontaneous excitatory firing events that, via LR

Conflict of interest statement: No conflicts declared.

Abbreviations: IDS, intermittent desuppression; VSD, voltage-sensitive dye; LMI, line-mo-
tion illusion; LGN, lateral geniculate nucleus; V1, primary visual cortex; LR, long-range;
mLGN, model LGN; mC, model cortex (numerical cortex with this specific experimental class
of parameters).

*To whom correspondence may be addressed. E-mail: cai@cims.nyu.edu or david.
mclaughlin@nyu.edu.

Sindividual neurons in V1 respond preferentially to elementary features of the stimulus,
such as the orientation of gratings. Earlier optical imaging experiments (8, 9) have
revealed beautiful maps of orientation preference that tile cortical layers. LR connections
specifically couple neurons of similar orientation preference (10, 11).
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Fig. 1. Cortical architecture and spontaneous activity. (A) A lattice of ~108 neurons distributed in 12 X 8 = 96 orientation hypercolumns spanning an ~6 mm X
4 mm patch of cortical space. The color labels the preferred orientation of a neuron at the corresponding location. A neuron in the black dot receives local
isotropic excitation (inhibition) from randomly, sparsely coupled neuronsinside the local range indicated by the small pink (cyan) circle and LR orientation-specific
excitation from other neurons inside the yellow-rimmed domains of similar orientation preference. The typical lateral extent of the LR connections is shown by
the yellow ellipse. The white box ® is a typical subregion used for quantifying spontaneous activity. (B) The similarity index p(6, t). (C) The firing rate m(0, t) of all
excitatory neurons in ® that prefer orientation 6 over the same cortical period as in B. (D) The cross-correlation C(7) = p * . (E) The autocorrelation of m(6, t).

lateral connections, enhance the NMDA conductances of ori-
entation domains with similar orientation preference within ~1
mm; (ii) a cascade of successive firing events further recruits
neighboring iso-orientation domains across ~4 mm and estab-
lishes conductance and voltage patterns that are often very
similar to the patterns of activity evoked by oriented gratings;
and (iif) the subsequent rise in cortical inhibition suppresses any
further recruitment, and the pattern slowly drifts or decays over
the time scale of the NMDA conductance (=80 ms), leaving the
inhibition to decay naturally. In our simulations, the phenomena
associated with the structured patterns of this IDS state capture
the behavior of ongoing spontaneous activity as observed in
experiment (7).

A natural conceptual question arises: What are the functional
implications of the IDS cortical operating point? Does this
characterization of spontaneous V1 dynamics facilitate our
understanding of how V1 responds to stimuli? A particularly
fascinating visual stimulus is the Hikosaka line-motion illusion
(LMI) stimulus paradigm.” As revealed by VSD imaging (13),
there is an intriguing similarity between the V1 spatiotemporal
activity in response to (7) a small square that drifts linearly across
visual space and (ii) the Hikosaka LMI stimulus (12). This
preattentive visual illusion (14) is fascinating because it suggests
that our comprehension is linked to a mechanism in the early
stages of the visual pathway that cannot discriminate disparate
stimuli (13). Can our IDS state be invoked to account for this
spatiotemporal similarity in our model V1 cortex?

To model evoked spatiotemporal activity over an extended
cortical area (=25 mm?), we construct a large-scale numerical
model for a patch of V1 as well as its feedforward lateral
geniculate nucleus (LGN) input, with physiologically reasonable
parameters. For such work in computational neuroscience,
computational scale-up is an urgent issue. Because the IDS
dynamics exhibit intrinsic correlated fluctuations that cannot
easily be captured by a coarse-grained formalism such as mean
firing-rate representation (15), our computational scale-up is
accomplished through an algorithmic approach, instead of sta-
tistical coarse-grained formalisms. We develop and implement a
fast adaptive algorithm (16) to simulate a coupled system of ~10°
cortical point neurons. In terms of theoretical understanding,

TThe Hikosaka LMI stimulus paradigm is a cue of a quickly flashed stationary square followed
a few milliseconds later by a stationary bar oriented so that one end of the bar overlaps the
cue. Together, these stationary stimuli generate the perception of motion (12).

18794 | www.pnas.org/cgi/doi/10.1073/pnas.0509481102

large-scale computational models allow us to confront the issue
of realizability of simple, idealized mechanisms within a realistic
network. In this study of LMI-associated spatiotemporal pat-
terns, we note that our use of an idealized V1 model without
higher-order feedback is consistent with the suggestion that the
spatiotemporal activity in early visual areas is a cortical correlate
of the bottom-up mechanisms underlying the preattentive LMI
(13). As we will show below, our numerical cortex produces
spatiotemporal patterns in response to the LMI stimulus that are
very similar to those observed experimentally, and the IDS
operating point plays a critical functional role in this response.
The essential ingredients of the detailed network mechanisms
underpinning the LMI phenomenon in our model cortex are (i)
the LGN-sculpted spatiotemporal structure of the LMI input,
(ii) a priming effect of the LR NMDA-type cortical coupling, and
(iii) the NMDA conductance-voltage correlation manifested in
the IDS state. This mechanism in our model cortex, in turn,
suggests a physiological underpinning for the LMI-associated
patterns in the visual cortex of anaesthetized cat (13).

Finally, as these studies illustrate, the technological advances
in modern experimentation that permit the observation of
spatiotemporal cortical activity patterns, and the technological
advances in modern computation that permit the large-scale
simulation of these spatiotemporal patterns, allow for comple-
mentary experimental and theoretical studies that were beyond
reach just a decade ago.

Methods

The Model. For details, see Supporting Text, which is published as
supporting information on the PNAS web site. We model an ~6
mm X 4 mm patch of V1 cortex by constructing a two-
dimensional lattice of ~10° model point neurons (with label 7).
Because visual angles subtended by stimuli in our study are
sufficiently small, retinotopic effects are ignored. Each neuron
has a cortical position x; corresponding to its location in the
model cortex. There are 80% excitatory neurons and 20%
inhibitory neurons. Half of the neurons receive direct LGN
input, whereas the other half do not. Every neuron also has a
preferred orientation 6,(x;), which is laid out in predetermined
pinwheels (see Fig. 14) (8, 9). We note that our network is an
effective or “lumped” model of V1 because we do not include the
detailed laminar structure of V1 (7).

The dynamics of the ith neuron’s membrane potential V; is
governed by a single compartment, conductance-based, expo-
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nential integrate-and-fire equation (17, 18). Every neuron is
locally isotropically sparsely connected to ~400 nearby neurons,
within ~250 um (19), at random. In our model, there are slow
(=80 ms) NMDA (20-27) in addition to fast (=3 ms) AMPA
excitatory conductances in the orientation-specific LR connec-
tions, which project to both excitatory and inhibitory neurons
(10, 28-30). The LR spatial coupling kernel has spatial scale
'R = 1,500 wm with eccentricity 1~2 (11, 31) with a random
distribution of the major axes and connects neurons in different
pinwheels with similar preferred orientations.

In our simulation, cortical activity is quantified by the slav-
ing voltage V5(x;, ) = V2 (1) = [¢“VE + (& () + g (t?\)VE +g7 (1)
V1/gr (), 87 (1) =g~ + g + é’k‘k g’ where gl g%, g7, andgié are
its leakage, AMPA, NMDA, and GABA conductances, respec-
tively, and V', VE, and V' T are the leak, excitatory, and inhibitory
reversal potentials, respectively. We use V3(x, £) to represent (32)
the subthreshold dendritic potentials associated with the VSD
optical signal in the superficial layers of the cortex (3, 33).

Our model cortex is driven by background noise and a model
LGN (mLGN) (for details, see Supporting Text). Both the back-
ground spike times and the mLGN spike times are independently
sampled from Poisson processes. The background rate is spatio-
temporally uniform (i.e., homogeneous background), and the
mLGN rates are given by a linear spatiotemporal convolution of the
visual stimulus. Because of the random distribution of preferred
phase (34), our mLGN has the same spatially averaged mean of
feedforward input rate to any small cortical area. A strong visual
stimulus will induce a large modulation in input rate from the
mLGN, which will cause more firing.

The network architecture is illustrated in Fig. 14. Fig. 2
displays the stimulus paradigms for the moving square and LMI,
as well as the corresponding mLGN output rate in our model.

The Dynamic Regime: IDS. Our model cortex with a strong NMDA-
type LR coupling, countered by a strong inhibition, can give rise to
a strongly fluctuating dynamics with the IDS cycle (as described in
the Introduction), generating spontaneous, coherent, ongoing spa-
tiotemporal activity patterns as in real cortex (7). In our simulations,
we observe a correlation between the spatial patterns of V5(x, 1),
NMDA conductance gN(x, ), and the firing rate m(x, ), with
moderate rate, only when our numerical cortex is in an IDS state.
Furthermore, the IDS state seems to be the only cortical operating
point in which subthreshold activity is also correlated with low (2-10
spikes per s) spontaneous firing rates as well as with moderate
(10-60 spikes per s) evoked firing rates. It turns out that these
correlations play a significant role in our modeling in this work.
Therefore, we operate our numerical cortex in an IDS regime by
setting appropriate local excitatory, inhibitory, and LR excitatory
cortico—cortical coupling strengths. Our model is thus strongly
constrained, left with only few parameters to tune. In what follows,
we use the term “model cortex” (denoted as mC) to refer to our
numerical cortex with this specific class of parameters.

As described in ref. 7, the spontaneous activity patterns of the mC
can be quantified (1, 2) by the similarity index p(6, ¢) obtained by
spatially correlating the instantaneous unevoked voltage profile
I5(x, t) recorded in a ~4-mm? subregion (® in Fig. 14) of our mC
with the preferred cortical state V3 (x, 6). The V3 (x, 6,) is the
spike-triggered average of the evoked activity profiles V5(x, Ty,, 6,)
obtained by stimulating our mC with a high-contrast drifting grating
of orientation 64, where Ty, is a spike time of a neuron with the
orientation preference 6; (1, 7). As reported before (7) and
recapitulated in Fig. 1B, in our mC, the spontaneous voltage profile
sometimes resembles one of the preferred cortical states, and the
pattern drifts with time scale ~80 ms.

Here, we further discuss the causal relationship between
spatial patterns and spiking events in the IDS regime. We
measure the firing rate m(6, ¢) of neurons in the recorded
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Fig.2. mLGN-sculpted cortical input for the drifting-square and LMl stimulus
paradigms. (A) Typical mLGN time kernel, with a fast rise and a slow decay. (B)
Typical mLGN spatial Gabor kernels for various orientations with a particular
spatial phase and spatial frequency. (C) Visual stimulus of a square of size 1.5°
X 1.5° moving at ~32° per s. (D) Spatiotemporal distribution of the mLGN
output firing rate determined by convolving the moving-square input in C
with the time kernel of A and the Gabor function indicated by the square in
B. (E) LMl stimulus. First, a stationary square is displayed for 48 ms, then a blank
screen is shown for 10 ms, and then a stationary bar of size 6° X 1.5° is
displayed. (F) Spatiotemporal distribution of mLGN output firing rate ob-
tained by convolving the LMI input with the mLGN time kernel and the Gabor
function (note that the mLGN output is simply a linear function of the input,
and there is no progressive rightward growth of activity). These stimuli closely
resemble what is used in experiment (13). Frame times are shown at right ,
with increment A = 9.6 ms throughout the text, which corresponds to the
frame rate used in the VSD imaging experiment (13).

subregion that prefer orientation 6, as shown in Fig. 1C, and the
time-correlation between p(0, ) and m(6, 1), i.e.,

T

1 T N
C(r) = iir;[c 2T , dtfo dop(0,t + 7)m(0, t),

where p, rin are normalized versions of p, m with 0 mean and
variance 1. For the spontaneous dynamic regime of our mC, each
intermittent recruitment event is precipitated by a few spikes
that quickly (=5 ms) generate a cascade of activity and create a
spatial NMDA pattern that accentuates a particular orientation.
Once such a pattern is established, it in turn induces more spiking
events within ~10 ms. Therefore, even though most spontaneous
activity patterns are induced by a few significant spikes, the
majority of spikes in the system are simply caused by a spatial
pattern of activity that has been just established. This causality
is reflected in the cross-correlation C(7) as shown in Fig. 1D,
which exhibits a peak at 7 = —10 ms, indicating that the firing
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Fig.3. Activity patterns of our mC vs. experiment (13). (A-C) Flashed-stationary-square stimulus. Visual input (A), the VSD imaging of cat visual cortex (B), and
the V2 profile of mC (C) are shown. (D-F) Stationary-bar stimulus. Visual input (D), the VSD imaging of cat visual cortex (E), and the V5 profile of mC (F) are shown.
(G-J) Moving-square stimulus. Visual input (G), the VSD imaging of cat visual cortex (H), the V* profile of mC (/), and the NMDA gN profile of mC (J) are shown.
Note the strong correlation between V5 and gN. (K-N) LMI stimulus. Visual input (K), the VSD imaging of cat visual cortex (L), the V5 profile of mC (M), and the
NMDA gN profile of mC (N) are shown. Note that mC activity profiles (M and N) show progressively growing activity from 8A to 11A even though the visual input
(K) and the mLGN output (Fig. 2F) do not. B, E, H, and L have the same scales for activity corresponding to the upper color bar. [Reproduced with permission from
ref. 13 (Copyright 2004, Macmillian Publishers Ltd.).] C, F, I, J, M, and N are obtained by averaging five trials with the same activity scales as indicated by the lower
color bar (with numerical values for V5 and gN X 102). See Fig. 2 for stimulus sizes. The time for each frame is shown at left, with increment A = 9.6 ms.

rate is a strong signifier of the cortical state observed millisec-
onds earlier. We further note that the autocorrelation of m(6, 7),
as shown in Fig. 1E, indicates that there are roughly two time
scales, =10 ms, as associated with recruitment, and ~80 ms,
which is related to the slow decay (=80 ms) of a pattern.

Results

To calibrate the strength of our mLGN, we use the experimentally
observed V1 response to a flashed stationary square via real-time
VSD-based optical imaging, as reproduced in Fig. 3B from ref. 13,
and choose the LGN input strength so that the flashed-square input
(Fig. 34) generates a physiologically reasonable activity pattern
within the mC as shown in Fig. 3C. Just as in the real cortex (13),
the quickly flashed square (lasting from 0—48 ms) gives rise to a
delayed surge of cortical activity, the onset of which is ~50 ms after
the square is initially presented, and then eventually decays (after
another ~130 ms). We note that, for each of our simulations, we
present stimulus only after the spontaneous activity in the mC has
reached a statistically steady state.

Our mCis presented with various other stimuli similar to those
used in experiment: a stationary bar, a drifting square, and the
LMI stimulus (Fig. 3 D, G, and K, respectively). The resulting
spatiotemporal activity profiles are displayed in Fig. 3 F, I, and
M. By juxtaposing frames corresponding to the same time, it is
easy to see that these results are in very good agreement with the
experimental observations, as reproduced in Fig. 3 E, H, and L.
As can be seen clearly in Fig. 3 D-F, a stationary bar also
produces a delayed surge of cortical activity, the onset of which
is ~50 ms after the bar is presented, and then it eventually decays
(after another ~130 ms). As shown in Fig. 3 G-I, the moving-
square stimulus induces activity near the cortical area corre-
sponding to the square’s initial position after a similar initial
delay (=50 ms). This activity grows progressively rightward to fill
out the cortical area corresponding to the square’s path, and then
it eventually decays. Fig. 3/ reveals the NMDA gN-signature of

18796 | www.pnas.org/cgi/doi/10.1073/pnas.0509481102

the mC, and it can be clearly seen that the voltage activity VS is
highly correlated with the NMDA conductance. As noted be-
fore, this nontrivial correlation is observed only in an IDS regime
and plays a critical role in the LMI spatiotemporal dynamics (see
Discussion). Finally, in Fig. 3 K-N, we illustrate the spatiotem-
poral dynamics under the LMI stimulus paradigm—a quickly
flashed (lasting from 0—48 ms) stationary square followed (10
ms later) by a stationary bar. As can be seen in Fig. 3 M and N,
the V8 and gN activity of the mC initially manifests near the
cortical area corresponding to the square and grows steadily
rightward to fill out the area corresponding to the bar. This
activity has the same time course and spatial spread as in the real
cortex (Fig. 3L). Just as in the real cortex (13), this activity is
strikingly similar to the spatiotemporal pattern generated by the
moving square (see Fig. 3 I-J); this similarity is believed to be
associated with the illusory line-motion perception (13). We
note that this rightward growth of activity begins ~77 ms after
the square is flashed, which is well before the time ¢ ~ 100 ms
when the cortex would exhibit a significant response to the
presentation of the bar alone (see frame 11A in Fig. 3F). It is
important to note that this growth cannot simply be attributed
to feedforward input from the mLGN, as clearly seen by
comparing Fig. 3M and 2F. As will be explained in Discussion,
the cortico—cortical interactions underlie the growth in activity
from 77 to 116 ms. Incidentally, we note that the peak firing rate
of excitatory neurons in our mC under the above stimuli is below
60 spikes per s, which is consistent with the experimental
measurement (13).

To investigate the cue-contrast dependence of this “LMI
phenomenon,” i.e., the progressive spread of cortical activity
induced by the LMI stimulus, we stimulate our mC with many
different versions of the LMI stimulus paradigm. Following the
experiment in ref. 13, each version of the LMI stimulus is
identical to the original one, as shown in Fig. 3K, except for the
contrast of the initial square cue (the subsequent bar is at the

Rangan et al.
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Fig.4. Effect of cue contrast on onset and propagation of mC activity under
LMI stimulus paradigm. The average horizontal coordinate of the activity
front obtained by thresholding gN or V5 profiles is plotted against the times of
measurement. Note the delay of the growing activity for lower contrast cues
and the independence of activity growing speed on the cue contrast.

same contrast for all versions of the stimulus). For each stimulus,
we record the thresholded activity. Fig. 4 summarizes the
measurement of the resulting “wavefront” position as a function
of time. For cue contrast below 0.04, there is little to no
discernible wavefront. For contrasts between 0.05 and 0.10, we
observe that the wave starts earlier for higher contrast and the
wave speed is ~0.1 m/s, which is consistent with the experimen-
tally reported activity spread speed in V1 (13, 35, 36). These
observations agree well with the VSD imaging experiment
(figure 4e in ref. 13).

Discussion

The cortical activity induced by the LMI stimulus (as seen in Fig.
3 L and M) is clearly not a linear spatiotemporal convolution of
the LMI stimulus itself (e.g., Fig. 2F). In experiment, it is difficult
to pinpoint the origin of this nonlinear phenomenon, which
might have multiple sources in the real cortex, including feed-
back from higher levels. However, in our simulation, the LMI
phenomenon arises as a consequence of the recurrent cortico—
cortical interactions within our mC, which has no structured
feedback. This result suggests that the minimal cortical archi-
tecture captured in our V1 model could be the primary cause of
the experimentally observed LMI phenomenon.

It turns out that the key ingredients of the mechanism
underlying the LMI phenomenon in our mC are (i) the mLGN-
sculpted spatiotemporal profile of the LMI input, (ii) the cue-
induced facilitative effect of the LR NMDA-type cortical con-
nections, and (iii) the gN-V/ correlation in spatial patterns in the
IDS state. Fig. 5 illustrates the mechanism in detail.

First, we consider the effect of the LMI stimulus on a
numerical cortex with very weak LR lateral cortical connectivity
and comparatively strong input strength from the mLGN. For
this hypothetical LGN-dominated cortex, we would observe
spatial patterns of mLGN input modulation, firing rate, and
voltage like those indicated by the red patches in Fig. 5. (The
meaning of the green patterns and the fourth column of Fig. 5
will be discussed in the next paragraph.) The initial flashed
square (at 0 ms) causes a transient increase in the spatial
modulation in the input rate from the mLGN, as indicated by the
red arrow a in Fig. 5. This input modulation from the mLGN
immediately impinges on the left area of this numerical cortex
(see red arrow b in Fig. 5) and slowly builds up enough excitatory
cortical conductance, after ~50 ms, to cause firing (see purple
arrow b in Fig. 5). In this LGN-dominated case, the cortical firing
gives rise to a weak voltage signature in the left area of the mC
(see red arrow ¢ in Fig. 5) that will decay when the mLGN input
dies away. Later, when the bar is shown (at 58 ms), the mLGN
causes a transient increase in the spatial modulation of input rate
throughout the left to right areas of the numerical cortex (see red
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Fig. 5. Network mechanism underlying the LMI phenomenon. Column 1
shows visual input to mLGN. Column 2 shows spatial modulation in mLGN
firing rate input to mC. Column 3 shows spatiotemporal distribution of firing
rate in mC. Column 4 shows NMDA conductance profile in mC. Column 5 shows
the voltage activity profile in mC. The cortical spatial scale in columns 2-5 is the
same as in Fig. 3N. The red patches correspond to the activity of a numerical
cortex with weak LR cortical connections. The red and purple arrows indicate
causal relationships of activity in this LGN-dominated numerical cortex, which
is driven predominantly by the feedforward mLGN input. The green patches
and green arrows correspond to the additional activity and the causal rela-
tionships induced by strong LR lateral cortical couplings of NMDA-type in our
recurrent mC. (See text for details.)

arrow d in Fig. 5). As this slowly building input rate modulation
impinges on the mC (red and purple arrows e in Fig. 5), there is
essentially no difference between the middle and right areas of
this mLGN-dominated cortex; both are equally stimulated over
the ~50-ms interval starting from the onset of the bar. After-
ward, the mLGN causes cortical firing simultaneously through-
out the left to right areas of the feedforward numerical cortex
(see the end of arrow e in Fig. 5). As before, the voltage signature
is weakly correlated with the firing rate profile, which is essen-
tially a time-delayed version of the input from the mLGN. This
LGN-dominated cortex behaves essentially linearly, and the LMI
phenomenon is not observed.

Now we turn to our mC, which has relatively strong LR cortical
couplings of NMDA-type. In this case, we observe the set of
activity patterns indicated by the combination of red and green
patches in Fig. 5. (Note that the green color here does not label
inhibition. It indicates additional activities induced via LR lateral
cortical interaction.) Initially the mC has a response similar to
the LGN-dominated numerical cortex discussed earlier. The
flashed square causes an increase in the input modulation from
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Fig.6. Activity patterns for other numerical cortices under LMl stimulus. (A and B) Model cortex with very weak LR connections. The activity profile is essentially
the LGN-dominated case (see the red patches in Fig. 5). The voltage (A) is not correlated with the NMDA profile (B). (C and D) Model cortex with almost all
AMPA-type LR connections (i.e., A = 0). The activity profile of voltage (C) and NMDA (D) is again similar to the LGN-dominated case. (€ and F) The standard mC,
except that the gNvalues are flipped at 68 ms. This flip results in the right area of the mC being primed and hence firing before the middle of the mC. The activity
of voltage (E) and NMDA (F) grows from right to left instead of from left to right. (G and H) The standard mC, except that the NMDA release is blocked in the
left area of the mC. The square cue can no longer prime the middle of the mC, and the activity profile of voltage (G) and NMDA (H) in the right area of the mC
looks similar to those when the bar is flashed alone (Fig. 3F). ( and J) Numerical cortex with very strong local inhibition. The right area of the strongly inhibited
cortex recruits before the middle area, which is under suppression induced by the square cue. (K and L) The standard mC stimulated by a slowly growing bar
(instead of a moving square), which grows from the left at speed of ~16° per s. The spatial patterns of voltage (K) and NMDA (L) exhibit a slower growing rate
than those under our standard LMI stimulus. (M and N) The spatial patterns of voltage (M) and NMDA (N) under our standard LMI stimulus for the standard mC
are displayed for comparison. See Fig. 2 for stimulus sizes. The spatial scales for each cortical frame are the same as in Fig. 3N. All spatial patterns are obtained

by averaging five trials with activity scales indicated by the color bar (with numerical values for V5 and gN x 102).

the mLGN (as indicated by red arrow a in Fig. 5), which
eventually builds up enough excitatory cortical conductance to
cause cortical recruitment (red and purple arrows b in Fig. 5).
From here on, the mC response differs from the response of the
LGN-dominated numerical cortex. Because of strong LR corti-
cal couplings, the few cortical spikes triggered by the mLGN in
the left area of the mC increase the NMDA conductance of
neurons in the nearby cortical area spanned by the LR connec-
tion spatial scale (green arrow A4 in Fig. 5). The NMDA time
scale ™ = 80 ms is sufficiently long so that this gN persists in the
area (green arrow C in Fig. 5) after the mLGN input modulation
has decayed. Because of the gN-V correlation in the IDS state (as
indicated by green arrow B in Fig. 5), the voltage signature also
persists for many tens of milliseconds. Now, when the mLGN
starts to respond to the bar (red arrows d and e in Fig. 5), the
activity in the middle of the mCis already different from the right
area of the mC. Specifically, because of the spatial decay of the
LR coupling kernel, the middle of the mC has a higher NMDA
conductance and subthreshold voltage, and, on average, the
neurons in the middle of the mC are closer to firing than the
neurons in the right area of the mC.! Thus the input modulation
from the mLGN due to the bar, which steadily builds excitatory
conductance throughout the cortex, causes cortical recruitment
in the middle of the mC before any recruitment occurs in the
right area of the mC (see green arrow D in Fig. 5). Note that, in
order for this mechanism to work, it is important that the square

INote the role of spatial decay of LR NMDA conductance and the role of the gN-Vv
correlation here. In addition, to account for the effect on the bar shown 58 ms after the
square cue onset, the slow decay of NMDA together with the gN-V correlation becomes
necessary in this mechanism.
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cue only “primes” the middle of the mC, i.e., the cue-induced
NMDA conductance should not cause too much firing in the
middle of the mC but only facilitate the recruitment of future
spiking events. This sequence of events (recruitment — NMDA
—> subthreshold voltage — primed mC — facilitation of nearby
recruitment) continues under the influence of the bar, and the
activity profile grows rightward across the mC.**

It is important to note that this wave of activity is not a result of
physical synaptic transmission times or axonal-dendritic conduc-
tion speeds (we investigated both of these effects in our simulations,
via a delay between the time of a spike and the onset of its
postsynaptic conductance, and found that they did not alter our
network mechanisms). Rather, the initial recruitment caused by the
square establishes a spatial NMDA distribution that has higher
conductance in the middle of the mC than in the right area of the
mC, as a consequence of the spatial decay of the LR coupling
kernel. This spatial distribution is then converted to a temporal
profile by the slowly increasing input rate modulation from the
mLGN caused by the bar. In effect, the cue induces a transient
cortical operating point (i.e., the middle area of the mC is primed)
from which the cortex responds to the bar. In this sense, the network
itself underlies the origin of the wavelike activity.

The NMDA-facilitated priming mechanism, as described in
Fig. 5, also offers insight into the effects of the cue contrast on
the onset and propagation of the wavelike activity profiles
observed both in experiment (13) and in our simulations, as
shown in Fig. 4 (as mentioned above, the contrast for the bar

**Note the role of the cortical spatial extent of the bar and the rising time of the mLGN
drive due to the bar in this mechanism. Clearly, if the delay between the square and the
bar is too long, the priming mechanism is no longer operative.
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remains fixed while different contrasts of the square cue are
compared). Because high-contrast stimulus causes more initial
firing events than low-contrast stimulus does, a high-contrast
square cue causes more recruitment in the left area of the mC
and increases the subthreshold voltage (via the LR NMDA-type
connections) in the middle of the mC more than a low-contrast
square cue would. Thus, a high-contrast cue in the LMI stimulus
brings the middle of the mC closer to firing than a low-contrast
cue does. Therefore, it takes less time for the bar-induced mLGN
input to cause recruitment in the middle of the mC, and hence
the activity growth starts earlier in the high-contrast case than
in the low-contrast case. After the middle of the mC recruits and
the activity growth begins, there is essentially no difference
between low and high cue contrast because the contrast of the
bar flashed later is the same for different versions of the LMI
stimulus.

To further validate the NMDA-facilitated priming mecha-
nism, we present the LMI stimulus paradigm to other numerical
cortices with different dynamical properties. Clearly, because of
the limited duration of the priming effect, if the delay between
the cue and the bar is too long, then there will be no LMI
phenomenon. In addition, if we artificially shorten (lengthen) the
rise time scale of the mLGN time kernel, then the recruitment
occurs earlier (later). Accordingly, the wave of the growing
activity onsets earlier (later) (data not shown).

First, we verify the LGN-dominated picture described above
by tuning the numerical cortex to a homogeneous operating
point (7, 37). This cortex shares all of the parameters of the mC
except for the LR strengths S™R, which are sufficiently weak so
that the IDS behavior is destroyed. Hence, no gN-V correlation
is present. Thus, the cortical firing events in the left area of the
weak numerical cortex no longer affect nearby cortical regions
via LR couplings (the effect indicated by green arrows 4 and B
in Fig. 5 no longer exists). From our mechanism, we expect that,
if this weak numerical cortex is presented with the LMI stimulus,
mLGN driven behavior should be obtained, as confirmed in Fig.
64. Note that by moving away from the IDS cortical operating
point, the NMDA conductance profile is indeed no longer
correlated with the voltage, as seen in Fig. 6B.

We also study possible LGN-dominated behavior by con-
structing a model cortex without NMDA-type LR connections.
We use the same parameters as the mC except for the parameter
A, which is set to be nearly zero, where A models the percentage
of NMDA receptors in these lateral connections (see Supporting
Text). In this case, again, the cortical operating point moves away
from the IDS, and the NMDA profile is uncorrelated with the
voltage (Fig. 6D). Even though the cortical firing events caused
by the flashed square increase the voltage in the left area of the
numerical cortex, the LR conductance is AMPA-type and decays
rapidly. The short-lived AMPA-facilitated priming effect in the
middle of the cortex should not affect the response to the bar
(the effect indicated by green arrow C in Fig. 5 no longer
persists). As a consequence, the LMI stimulus is expected not to
produce a wave of cortical activity, as confirmed in Fig. 6C. We
suggest that these LGN-dominated regimes might be accessible
in real cortex via pharmacological manipulation to rebalance the
LGN input and cortico—cortical LR interactions.

To highlight the significance of the persistent spatial NMDA
conductance profile in the priming mechanism, we perform the
following “tailored-priming” experiment. The parameters from
the mC are fixed, and the LMI stimulus is presented as usual, but
at the 68 ms time point, the value of the NMDA conductance of
each neuron is forcefully exchanged with the corresponding value
at the horizontally reflected cortical point. Right after the flip, the
NMDA conductance profile should have larger values at the right
of the mC than in the middle of the mC. Contrary to the original
scenario (Fig. 3M), this flip would result in the right area of the mC
being primed instead of the middle of the mC. Thus, from our
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Fig. 7. Predicted variants of the LMI stimulus. (A-D) Various different cues
(Upper) and bars (Lower) that we predict will create illusory motion phenom-
enon. (E-H) Stimulus using only the cue and a long, curved blob in a manner
similar to the LMI stimulus. The visual input. The cue of size ~1.5° X 1.5° and
the blob width ~1.5° and horizontal span ~6° (E), its mLGN output (F), and its
spatiotemporal activity patterns of voltage (G) and NMDA (H) in the mC are
shown. The mC activity profile grows outwards from the cue and fills out the
cortical area corresponding to the blob (note that our cue here is on the right).
(I-L) Growing blob stimulus (/), its mLGN output (J), and its spatiotemporal
activity patterns of voltage (K) and NMDA (L) in the mC. The spatial scales for
each cortical frame are the same as in Fig. 3N. All spatial patterns are obtained
by averaging five trials with the same activity scales as in Fig. 6.

135

13D

mechanism, we would expect that the onset of the bar first initiates
firing in the right area of the mC, and that the activity would grow
gradually from right to left, which is indeed confirmed in Fig. 6 E
and F. We can also flip the GABA and/or AMPA conductances
at various times, but the balance of the network is quickly restored
within ~10 ms, and the priming mechanism is not affected, thus the
resulting activity profile is almost indistinguishable from Fig. 6 M
and N afterward (data not shown).

We perform the following numerical simulation, which may be
realizable pharmacologically in experiment. We again use the
parameters from the mC but block the NMDA-type release in
the cortical area corresponding to the flashed square within the
left area of the mC. In this case, the LR connections should no
longer increase the subthreshold voltage of nearby neurons.
Thus, the middle of the mC would not be primed when the bar
appears. As a consequence, we expect that the phenomenon of
growing activity should not be observed, and the voltage signa-
ture outside of the blocked region should look essentially similar
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to that of the bar alone, as verified in Fig. 6 G and H by
comparison with Fig. 3 E and F.

We emphasize that not every numerical cortex in the IDS regime
produces the same type of growing spatiotemporal activity under
the LMI stimulus. In our mechanism, it is crucial for the cue to be
of a facilitative priming effect. If the flashed square does not give
rise to a sufficient increase in NMDA conductance in the middle of
the mC, those neurons will not be more likely to fire by the time the
bar is presented and, thus, will recruit at the same time as the
neurons in the right area of the mC. On the other hand, if the
flashed square increases the activity too strongly in the middle of
the mC, then the middle of the mC becomes saturated as a result
of the cue, rather than primed. For example, if the LR connections
are too strong, then a single recruitment event induced by the cue
does not merely increase the NMDA conductance of nearby
regions but also causes a substantial amount of cortical firing in the
middle of the cortex. If the local inhibition is also very strong, then
this increase in cortical firing can strongly suppress nearby cortical
regions, making further recruitment events less likely and actually
“antipriming” the neighboring regions (the effect indicated by
green arrow D in Fig. 5 no longer exists). Hence, the onset of the
bar can cause firing in the right area of the numerical cortex at
the same time as it would if the bar were presented alone, and
the middle of the numerical cortex may activate later due to the
inhibitory suppression. To verify this effect, we design a numerical
cortex with very strong LR NMDA lateral and local inhibitory
connections, which also adopts IDS-like behavior in the spontane-
ous state. Fig. 6 I and J confirm the antipriming scenario in this
strongly inhibitory numerical cortex, where the middle of the cortex
activates later than the right area in response to the bar.

Note that an LMI stimulus paradigm gives rise to a sensation of
a particular speed (12). As revealed experimentally (13), a growing
bar also generates a progressive growth of spatiotemporal activity
similar to that under the LMI stimulus, and the growth rate of the
spatial pattern is slower when the growing speed of the bar is slower.
This observation also is reproduced in our mC. Fig. 6 K and L shows
that, under the stimulus of a bar growing at speed ~16° per s, the
resulting spatiotemporal activity pattern has a slower growth rate
than the patterns observed under our standard LMI stimulus (i.e.,
48-ms cue and a stationary bar after a 10-ms delay), as shown in Fig.
6 M and N, which closely resemble the spatiotemporal pattern under
a drifting square moving at ~32° per s, as seen previously by
comparing Fig. 3 M with 1.
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Based on our mechanism, it is easy to predict which stimuli
could result in a motion illusion, and we can come up with many
alternatives to the square cue and subsequent rectangular bar of
the LMI paradigm. Note that, in our mechanism, the only
requirement for growing cortical activity is that the “bar” be
visually proximal to the “cue.” More specifically, the cue that
primes the mC can be anything that creates an NMDA conduc-
tance profile with a spatial gradient. The subsequent bar can be
anything that takes advantage of this gradient and causes
recruitment in one cortical area before another. Fig. 7 A-D
displays several possible cues (Upper) and bars (Lower), which
illustrate that our mechanism does not require sharp, straight
edges (Fig. 7 4, C, and D), high contrast (Fig. 7 4, C, and D),
spatial connectivity of the visual stimulus (Fig. 7 B and C), or the
cue being a subset of the bar figure (Fig. 7 4 and B). Each
variation on the LMI stimulus can be constructed by flashing the
cue for 40 ms or so and then steadily displaying the correspond-
ing bar (see Movie 1, which is published as supporting informa-
tion on the PNAS web site). Fig. 7 E-H illustrates a numerical
experiment in which we present a variant on the LMI stimulus
to our mC. The growing activity profile in the mC is similar to
that evoked by a continuously growing visual stimulus (Fig. 7
I-L). Clearly, our predictions cannot extend to very large stimuli,
or stimuli with multiple cues one after another, because such
stimuli may involve retinotopy, attention, or other physiological
complications (14, 38).

We emphasize that our results are robust to model parameters
as well as the individual neuronal model used. We can achieve
the LMI phenomenon with the same mechanisms, by retuning
the cortical parameters, even if we use linear or quadratic
integrate-and-fire point neurons; add other neuronal phenom-
enon such as synaptic depression or axonal delay times; or
change the cortical architecture slightly, for example, (7) with the
eccentricity of our LR elliptic coupling kernel, ranging from 1~2
and with any orientation of the ellipse, (ii) with local excitatory
or inhibitory interaction length scales, ranging from 100 um to
300 wm, or (iii) with the NMDA percentage A ranging from 5%
to 100% and, most importantly, with the NMDA decay time
ranging from ™ = 40 ms to ™ = 80 ms.

Finally, this work suggests a functional role for the priming
mechanism, namely, a role in the general cortical processing for
temporal ordering and the spatiotemporal binding of two stimuli
closely related in space and time.
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