
Journal of Physiology - Paris 97 (2003) 237–252

www.elsevier.com/locate/jphysparis
Large-scale modeling of the primary visual cortex: influence
of cortical architecture upon neuronal response

David McLaughlin *, Robert Shapley, Michael Shelley

Courant Institute of Mathematical Sciences, Center for Neural Science, New York University, 251 Mercer Street, New York, NY 10012, USA
Abstract

A large-scale computational model of a local patch of input layer 4Ca of the primary visual cortex (V1) of the macaque monkey,
together with a coarse-grained reduction of the model, are used to understand potential effects of cortical architecture upon neuronal

performance. Both the large-scale point neuron model and its asymptotic reduction are described. The work focuses upon orien-

tation preference and selectivity, and upon the spatial distribution of neuronal responses across the cortical layer. Emphasis is given

to the role of cortical architecture (the geometry of synaptic connectivity, of the ordered and disordered structure of input feature

maps, and of their interplay) as mechanisms underlying cortical responses within the model. Specifically: (i) Distinct characteristics

of model neuronal responses (firing rates and orientation selectivity) as they depend upon the neuron’s location within the cortical

layer relative to the pinwheel centers of the map of orientation preference; (ii) A time independent (DC) elevation in cortico-cortical

conductances within the model, in contrast to a ‘‘push–pull’’ antagonism between excitation and inhibition; (iii) The use of

asymptotic analysis to unveil mechanisms which underly these performances of the model; (iv) A discussion of emerging experi-

mental data. The work illustrates that large-scale scientific computation––coupled together with analytical reduction, mathematical

analysis, and experimental data, can provide significant understanding and intuition about the possible mechanisms of cortical

response. It also illustrates that the idealization which is a necessary part of theoretical modeling can outline in sharp relief the

consequences of differing alternative interpretations and mechanisms––with final arbiter being a body of experimental evidence

whose measurements address the consequences of these analyses.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

A common view held within theoretical neural science

is that numerical simulations of large-scale neuronal

networks are both too complex, and too simple, to
provide much real insight into the neural mechanisms of

cortical response. Too complex because of the large

number of parameters that must be fixed in a reasonably

sophisticated model, and too simple because the brain is

so complex on so many scales. While both of these

statements are undoubtedly true––there are many

parameters to be fixed and the brain is exceedingly

complex––we have not found their apparent corollary
to be so. We have found instead that when coupled
*Corresponding author. Tel.: +1-212-998-3077; fax: +1-212-995-

4121.

E-mail address: dmac@cims.nyu.edu (D. McLaughlin).

0928-4257/$ - see front matter � 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jphysparis.2003.09.019
together with analytical reduction and mathematical

analysis, and with a close eye to experimental data to

help fix parameters and bound the possibilities of cor-

tical activity, that such an approach can provide sig-

nificant understanding and intuition about the possible
mechanisms of cortical response. Further, the idealiza-

tion that is a necessary part of theoretical modeling has

the added (and sometimes overlooked) advantage of

outlining in sharp relief the consequences of differing

alternative interpretations. The final arbiter is of course

a body of experimental evidence whose measurements

address the consequences of these analyses. We hope to

illustrate our view through a central point of our mod-
eling: To understand how response in the visual cortex is

shaped by its geometry of connectivity, the ordered and

disordered structure of its input maps, and their inter-

action.

The primary visual cortex of the macaque monkey is

a layered structure, for which we [32] have developed a

mail to: dmac@cims.nyu.edu


Fig. 1. (a) From Blasdel [6], a detail from an optical imaging of the orientation mapping across the superficial layers of macaque V1, over an area

�1 mm2. The image shows four orientation hypercolumns with pinwheel centers. The superimposed black circles show the estimated length-scale

of monosynaptic inhibition in the local connections of layer 4Ca, while the white circle is that for excitation. (b) From DeAngelis et al. [17], a

comparison of preferred spatial phase for pairs of nearby cortical neurons.
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large-scale computational model of a set of orientation

hypercolumns within its input layer 4Ca. This is a de-
tailed point-neuron model, whose construction and

performance are both highly constrained by experi-
mental observations. With this large-scale model, we

have investigated potential effects of cortical architec-

ture upon neuronal performance. In part, we have fo-

cused upon the features of orientation preference (as

discovered by Hubel and Wiesel [25,26], the increased

firing rate of cortical neurons when a simple visual

stimulus, say a bar or grating, is set at a particular angle)

and orientation selectivity (how well that preference is
expressed). In McLaughlin et al. [32] we show that the

model qualitatively captures the observed selectivity,

diversity, and dynamics of orientation tuning of neu-

rons in the input layer, under visual stimulation by

both drifting and randomly flashed gratings [36,37]; in

Wielaard et al. [47] we show also that remarkably for a

nonlinear network, the model captures the well known

and important linear dependence of Simple cells upon
visual stimuli, in a manner consistent with both extra-

cellular [16] and intracellular [19,27] measurements; and

in Shelley et al. [40] we show that cortical activity places

our computational model cortex in a regime of large

conductances, primarily inhibitory, consistent with re-

cent intracellular measurements [2,9,24].

By ‘‘cortical architecture’’ we mean the spatial foot-

prints of synaptic connectivity within the cortex, to-
gether with the structure of ‘‘maps’’ of features (angle,

phase, . . .) of visual stimuli. Within the cortex, feature
maps can be ordered or disordered. Orientation prefer-

ence, with its beautiful pinwheel patterns revealed by

optical imaging experiments (see Fig. 1(a)) [6–8,31],

provides an example of an ordered map which regularly
tiles the cortical layer. On the other hand, the map of

spatial phase preference is apparently disordered, or

distributed randomly [17] from a broad distribution (see

Fig. 1(b)). The interplay of these two distinct types of
feature maps, with each other, and with the spatial

length-scales set by the synaptic footprints, can shape

neuronal response. We will use large-scale computa-

tional modeling, together with an analytical reduction to

coarse-grained representations developed by Shelley and

McLaughlin [39], to understand the consequences of this

interplay. Thus, we describe one illustrative example of

the qualitative insight which can be obtained from a
combination of large-scale modeling with asymptotic

reduction.
2. Materials and methods

2.1. The large-scale model

Our initial model, described in [32,47], is a large-scale,

detailed cortical model of a small local patch (1 mm2) of

input layer 4Ca for V1 of macaque monkey––a patch
containing four ‘‘orientation hypercolumns’’ with four

pinwheel centers. This input layer receives visual input

from the retina through the lateral geniculate nucleus

(LGN). Our model consists of a two-dimensional lattice

of 1282 coupled I&F neurons, of which 75% are excit-
atory and 25% are inhibitory. Imaging, anatomical, and

physiological measurements constrain the representa-

tion of the model’s neuronal components as well as their

coupling architecture; moreover, the model network’s

performance with respect to steady-state and dynamical

orientation selectivity, and the response properties of
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Simple cells, is consistent qualitatively with laboratory
observations.

Distinctive features of our model include:

• A local lateral connectivity that is nonspecific and iso-

tropic, with lateral monosynaptic inhibition acting at

shorter length-scales than excitation [13,14,20,30].

• An ordered map for orientation preference of cortical

neurons laid out as pinwheel patterns across the
model’s cortical surface, as revealed by optical imag-

ing experiments [6–8,31,34] of preference in the upper

layers of V1. Orientation preference is conferred on

the model’s cortical cells from the convergence of

output from many LGN cells [1,35], laid out as segre-

gated subregions of On- and Off-center cells.

• A disordered map of spatial phase preference, coming

with a broad distribution [17]. Again, the convergent
input from LGN cells sets a spatial phase preference

which varies widely from cortical neuron to cortical

neuron.

• A predominance of cortico-cortical inhibition.

The equations of the model: The model itself consists

of equations for the membrane potentials of excitatory

(inhibitory) neurons, denoted by vjE (v
j
I):

dvjP
dt

¼�gLv
j
P� gjPEðtÞ½v

j
P� VE� � gjPIðtÞ½v

j
P� VI�; P¼ E; I

ð1Þ
whose evolution determines the mth spike-and-reset
time, tjm of, this jth model neuron, defined by

vjPðtjmÞ ¼ 1; vjPðtjm þ 0þÞ ¼ 0: ð2Þ
Here the superscript j ¼ ðj1; j2Þ indexes the spatial
location of the neuron within the cortical layer. In these

equations, we have normalized the potentials, making

them dimensionless quantities. In this normalization
process, we begin with commonly accepted dimensional

values for cellular biophysical parameters: the capaci-

tance C ¼ 10�6 F cm�2, the leakage conductance gL ¼
50	 10�6 X�1 cm�2, the leakage reversal potential VR ¼
�70 mV, the excitatory reversal potential VE ¼ 0 mV,
the inhibitory reversal potential VI ¼ �80 mV [28], the
spiking threshold �v ¼ �55 mV, and the reset potential
set at the leakage reversal potential, )70 mV. Then the
transformation v ! ðv� VRÞ=ð�v� VRÞ sets the spiking
threshold to unity, the reset potential to zero, VE ¼ 14=3,
and VI ¼ �2=3. Within this normalization, the poten-
tials range over �2=36 vjE, v

j
I6 1. To convert back to

dimensional quantities, insert the dimensionless v into
the formula vmV ¼ ð�v� VRÞvþ VR.
Conductances: First, we note that the capacitance C

does not appear in Eq. (1), as all conductances have been
rescaled as rates, with units of s�1, through division by C.
Throughout we will use conductances normalized as

rates in order to emphasize the time-scales which they
represent. For example, the leakage conductance gL ¼
50 s�1 produces a leakage time-scale of sL ¼ g�1L ¼
1=ð50 s�1Þ ¼ 20 ms. True conductances are obtained
by multiplication by C ¼ 10�6 F cm�2; for example,

gL ¼ 50 s�1 	 10�6 F cm�2¼ 50 nS.
The time-dependent conductances arise from the

input forcing (through the LGN) and from noise to the

layer, as well as from the cortical network activity of

the excitatory and inhibitory populations. They have
the form:

gjEEðtÞ ¼ FEEðtÞ þ SEE
X
k

aj�k

X
l

GEðt � tkl Þ;

gjEIðtÞ ¼ f 0EIðtÞ þ SEI
X
k

bj�k

X
l

GIðt � T k
l Þ;

ð3Þ

with similar expressions for gjIE and gjII, where

FPEðtÞ ¼ gjlgnðtÞ þ f 0PEðtÞ; P ¼ E; I:

Here tkl (T
k
l ) denotes the time of the lth spike of the kth

excitatory (inhibitory) neuron. Note that gEE ðgEIÞ is the
conductance driven by excitatory (inhibitory) network
activity, and that the first ‘‘E’’ labels the postsynaptic

target as an excitatory cell. The conductances f 0
PP0 ðtÞ are

stochastic and represent synaptic activity from other

areas of the brain.

The conductance gjlgnðtÞ denotes the drive from the

LGN by which the visual signal (standing, drifting, or

random gratings) is relayed through convergent LGN

neurons to the jth cortical neuron. For drifting gratings,
the visual stimulus on the ‘‘screen’’ has intensity pattern

I ¼ Iðx; t; h;/; k;x; I0; �Þ given by

I ¼ I0½1þ � cos½ð~k �~x� xt þ /Þ��; ð4Þ

where ~k ¼ kðcos h; sin hÞ. Here h 2 ½�p; pÞ denotes the
orientation of the sinusoidal pattern on the screen,

/ 2 ½0; 2pÞ denotes its spatial phase, x P 0 its frequency,

I0 its intensity, and � its ‘‘contrast’’.
Spatial patterns of orientation preference: Optical

imaging [6–8,31] reveals ‘‘pinwheel’’ patterns of orienta-

tion preference in the superficial layers 2/3 of the cortex

(see Fig. 1(a)); neurons of like-orientation preference

reside along the same radial spoke of a pinwheel, with the

preferred angle sweeping through 180� as the center of
the pinwheel is encircled. We assume that there are pin-

wheel patterns in layer 4Ca, parallel to those in layers 2/3.
This tiling of the cortical layer by pinwheel patterns

of orientation preference, as well as the random map of

spatial phase preference (see Fig. 1(b)), are conferred

upon the model through the LGN drive gjlgnðtÞ. The total
input into the jth cortical neuron arrives from N (’20)
LGN cells:

gjlgnðtÞ¼
XN
i¼1

gj0

�
þ
Z t

0

ds
Z
d2xGlgnðt�sÞAð~xji�~xÞIð~x;sÞ

�þ

:

ð5Þ
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Here fRgþ ¼ R if R > 0; fRgþ ¼ 0 if R6 0; gj0 represents
the maintained (background) activity of the LGN neu-

rons feeding into the jth cortical neuron, in the absence
of visual stimulation. The temporal kernel GlgnðtÞ and
spatial kernel Að~xÞ of an LGN cell are chosen to agree

with experimental measurements [5,38]. The orientation

preference map is hard-wired into the cortical model,

through the orientation preference of each group of

LGN cells that converge onto each cortical cell [35].
That is, the spatial arrangement of LGN cell receptive

field centers, ~xji , confers an orientation preference (in
pinwheel patterns) on the input to each cortical cell in

the model. Additionally, the center of each cortical cell’s

receptive field (created through the aggregate LGN in-

put) is randomized, which confers a preferred spatial

phase on the LGN input of each cortical cell that is

distributed randomly [17], with a broad distribution.
The temporal kernels GrðtÞ model the time course of

synaptic conductance changes in response to arriving

spikes from the other neurons, which introduces the

time-scale ssyn ¼ 4–6 ms according to the formula

GlgnðtÞ ¼ c0t5½expð�t=s0Þ � c1 expð�t=s1Þ�; where

s0 ¼ 3 ms; s1 ¼ 5 ms:

The constant c1 is determined so that the kernel GðtÞ
integrates to zero, as is approximately the case for LGN

neurons in the magnocellular pathway [5,38].
The kernel Að~yÞ is of the form

Að~yÞ ¼ � a
pr2a

exp
h�
� j~y=raj2

i
� b

pr2b
exp

h
� j~y=rbj2

i�
;

ra ¼ 1:25k�10 , rb ¼ 1:75k�10 , a ¼ 1, b ¼ 0:74, with k0 the
preferred spatial frequency, and where + represents an

‘‘on-center,’’ and ) an ‘‘off-center’’ LGN cell.

The Gaussian kernels ða; b; . . .Þ represent the spatial
coupling between neurons, with the spatial length-scale
of excitation (radius 200 lm) exceeding that of inhibi-
tion (radius 100 lm). This local (within one hypercol-
umn) spatial coupling architecture is spatially isotropic,

which reflects our understanding of cortical anatomy.

We do not make the further assumption that these local

synaptic connections selectively couple specific feature

preferences––such as iso-orientation, like (or anti) spa-

tial phase. This local isotropy is consistent with local
anatomy, although the anatomy of long range (over

several hypercolumns) is observed to selectively couple

iso-orientation patches. For example, in the superficial

layers the longer range lateral connections are known to

be spatially heterogeneous [10,12,49], with connection

patterns coupling neurons of ‘‘like-orientation’’ prefer-

ences in a distinctive nonisotropic fashion. (See [11] for

theoretical modeling of this nonisotropic architecture.)
The computational model’s behavior depends on the

choice of the cortico-cortical synaptic coupling coeffi-

cients: SEE, SEI, SIE, SII. All cortical kernels have been
normalized to unit area. Hence, these coupling coeffi-
cients represent the strength of interaction, and are

treated as adjustable parameters in the model. In the

numerical experiments reported here, the strength ma-

trix (SEE, SEI, SIE, SII) was set to be (0.8, 9.4, 1.5, 9.4).
This matrix means cortical inhibition dominates in that

inhibitory neurons have much stronger coupling to all

other cortical neurons than do excitatory neurons. The

matrix given here generates simple cells that have the
orientation selectivity, and the magnitude and dynamics

of response, seen in physiological experiments [32].

2.1.1. The numerical method for the large-scale network

There are two main elements to address in the

numerical simulation of the model network, as given by

Eq. (1). The first is the evaluation of the cortico-cortical

conductances, as given by Eq. (3), that account for the
consequences of spiking activity within the network. For

the simulations presented here, we exploit the fact

that the connectivity is nonspecific and isotropic, that is,

that the connection kernels a; b; . . . , depend only upon
j� k, and that we have chosen the neurons to lie on a
spatial lattice. Hence we need to evaluate discrete con-

volutions of the form:

gj ¼
X
k

Aj�kBkðtÞ:

We evaluate this efficiently in OðN logNÞ operations,
where N is the number of neurons, using the discrete
convolution theorem, and the fast Fourier transform

algorithm. This is a ‘‘presynaptic’’ method. Each pre-

synaptic neuron (labeled k) has an amount of conduc-
tance to distribute, i.e. BkðtÞ ¼

P
l Gðt � tkl Þ, to all the

other postsynaptic neurons, with a weighting of Aj�k.

The second main issue is the temporal integration of

the potential equation (1). There are various sources of

error. Foremost is that resulting from the resetting
of the potential vj to zero following a spike (Eq. (2)).
Generically the potential will cross spiking threshold

between time-steps. If the potential is simply reset to

zero at the end of that time-step, then the error intro-

duced reduces the accuracy of the time-integration to

first order, that is OðDtÞ, regardless of the order of the
time-stepping algorithm. To achieve a given level of

accuracy then can necessitate using an unnecessarily
small time-step. However, if account is made of the

spike-time being between time-steps, and an appropriate

correction made to the reset potential at the end of the

time-step, then accuracy can be restored to the integra-

tion (see [23,41]). In the simulations reported here we use

a second-order Runge–Kutta method, developed in

Shelley and Tao [41], where appropriate correction for

spiking is made. This correction restores high accuracy
to the integration, at essentially no extra computational

cost. Another source of error is due to the onset of

conductance changes induced by arriving spikes, as
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modeled by the kernel GlgnðtÞ. A typical a-function rises
linearly from zero, while the kernel we use here rises

more smoothly (like t5 locally). As is analyzed in Shelley
and Tao, the smoothness of the onset dictates the

maximal order possible for an integration scheme. In

later work we have employed a fourth-order variant of

the Runge–Kutta scheme to achieve high accuracy at

moderate cost, as well as developed efficient schemes

that avoid constraining the point-neurons to a lattice
[45].

2.2. The coarse-grained reduction

While amenable to large-scale simulation and post-

processing of the simulational data, the full network

equations (1) are typically too complex to study ana-

lytically. A reduced representation which is more ame-
nable to analytical investigation and is easier to study

numerically is desirable. To obtain a reduced represen-

tation, in Shelley and McLaughlin [39] we reduce the full

network to a spatially coarse-grained network expressed

in terms of average firing rates over coarse-grained

cells (termed a ‘‘CG-cell’’; see the schematic in Fig. 2).

As it is an asymptotic approximation which introduces

no additional phenomelogical parameters, this mathe-
matical reduction provides a valid approximate repre-

sentation of the full neuronal network. This reduced

representation retains dependence upon spatial location

within the two-dimensional cortical layer, with cortical

interactions relative to cortical location within the ori-

entation hypercolumn.

Cortical maps such as orientation preference are ar-

ranged in regular patterns which tile cortical layers (Fig.
1(a)). Thus, we partition the two-dimensional cortical

layer into CG-cells, each containing many neurons, yet

small enough in spatial extent that ordered mapped

properties are roughly uniform within the CG-cell. This

is in opposition to disordered quantities such as pre-
κthCG   CELL_

Fig. 2. A schematic illustrating the tiling of the cortical surface into

coarse-grained cells.
ferred spatial phase /, that are apparently distributed
randomly from cortical neuron to cortical neuron (Fig.

1(b)). Accordingly, we will also assume that within each

CG-cell there are sufficiently many neurons that the

distributions of disordered quantities, such as preferred

spatial phase, are well sampled.

The asymptotic methods are founded upon the sepa-

ration of spatial length-scales associated with this coarse-

grained tiling, and upon a separation of time-scales:
there are three important time-scales in Eq. (1): the LGN

response time slgn ¼ Oð102 msÞ; a shorter time-scale of
the cortical-cortical interaction times (and the noise,

presumably synaptically mediated) ss ¼ Oð4 msÞ [3,22];
and the shortest, the response time of neurons within an

active network: sg ¼ Oð2 msÞ [40,47]. We emphasize that
the latter is a property of network activity. While the

separation of ss and sg is only a factor of 2, when the
network is under stimulation, our numerical simulations

[40] show that this is sufficient to cause cortical neurons

to respond with near instantaneity to presynaptic cortical

input. In the asymptotic reduction, we assume and use

the separation of time-scales, sg=ssyn � 1, to help relate

conductances to firing rates.

The separation of spatial scales allows a ‘‘Monte-

Carlo’’ approximation by integrals of the summations in
the conductances, Eq. (3). For example,

~gEEðx; t; hmEi/Þ ¼ SEE
X
k;l

KEEj�kGEðt � tkl Þ

’ SEE

Z
d2x0

Z t

�1
dsKEEðx� x0Þ

	 GEðt � sÞhmEi/ðx0; sÞ

� ðSEEKEE � GE � hmEi/Þðx; tÞ;

where

hmEi/ðx; tÞ �
Z

mEðx; t;/Þqð/Þd/;

qð/Þ denotes the probability density of the spatial phase
preference /, and where x denotes the spatial location of
the CG-cell.
Together with this coarse-graining, the separation of

time-scales sg � ssyn permits Eq. (1) to be integrated
asymptotically to yield a closed set of equations for the

average excitatory and inhibitory firing rates mPðx; t;/Þ,
P¼E, I, of neurons in the CG-cell at x:

mPðx; t;/Þ ¼ NPðx; t; hmEi/; hmIi/;/Þ ð6Þ

for P¼E and I. Here,

NPðx; t; hmEi/; hmIi/;/Þ

¼ �gT;P log
fID;P � gT;Pgþ

gT;P þ fID;P � gT;Pgþ
�	 


ð7Þ
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where

gT;P � gR þ glgnðx; t;/Þ þ
X
P0

~gPP0 ðx; t; hmP0 i/Þ
�

þ �fP0
�

ð8Þ
is the total conductance, and

ID;P � VE glgnðx; t;/Þ þ
X
P0

VP0 ~gPP0 ðx; t; hmP0 i/Þ
�

þ �fP0
�

ð9Þ
is the so-called ‘‘difference current’’ [47], as it arises as

the difference of excitatory and inhibitory synaptic cur-

rents. The thresholding fID;P � gT;Pgþ in Eq. (7) is taken
to imply that N ¼ 0 if ID;P � gT;P6 0. This latter
quantity is the ‘‘threshold membrane current’’, obtained

by setting vj ¼ 1 in Eq. (1), and its positivity is a nec-
essary condition for cell spiking.

The coarse-grained equation (6) can be averaged with
respect to / to yield closed space- and time-dependent

equations for the phase-averaged firing rates:

hmPi/ðx; tÞ ¼ NPðx; t; hmEi/; hmIi/;/Þ
D E

/
: ð10Þ

This system can be solved for phase-averaged quantities

directly through Eq. (10), whose solution can then be

used to reconstruct phase-dependent quantities through

Eq. (6).

Other sources of noise, such as background noisy

conductances with fluctuations on the synaptic time-

scale, can be incorporated with similar methods to those
described here for the random distribution of spatial

phase preferences [39]. One should note too that the

coarse-grained asymptotics is a large N limit; hence, it

will not capture finite size effects (which one does see in

numerical simulations of the I&F system, and most

certainly in in vivo response).

2.2.1. The numerical method for the CG network

In comparison to the point-neuron simulations, sim-

ulating a CG network is far simpler. With appropriate

choices of temporal kernels GE;IðtÞ, Eq. (10) can be
rewritten as a set of differential equations in time for the

evolution of hmPi/. As there is now no spike and reset
mechanism, standard time-integrators can be used.

FFTs are still used to rapidly evaluate the spatial con-

volutions, though now at a coarser spatial description
than for the point-neuron simulations. Details can be

found in Shelley and McLaughlin [39].
Fig. 3. From the point-neuron network simulations, the spatial dis-

tribution of time-averaged firing rates (left panel), and of circular

variance (right panel), across the model cortical surface (�1 mm2).
3. Results

3.1. Results from numerical simulations of the full

network

An important feature of large-scale cortical modeling

is the ease with which one can obtain spatial distribu-
tions of populations of neurons. That is, in addition to
pointwise measurements of single neuronal properties

(such as firing rates, orientation selectivity, and time

traces of membrane potentials and conductances), one

can display and analyze the spatial distribution of the

population across the cortical layer.

For example, in Fig. 3 we show the spatial distribu-

tion of two response properties across the model’s four

hypercolumns. The left panel shows the spatial distri-
bution of time-averaged firing rates of excitatory cells in

the simple cell network described above, driven by a

drifting grating visual stimulus. The right panel shows

the circular variance of the orientation tuning curves,

which provides one measure of the neurons’ selectivity

as orientation detectors, and is defined by

CV½mj� � 1�
R
mjðhÞ exp 2ihdhR

mjðhÞdh ; ð11Þ

where mjðhÞ denotes the (time-averaged) firing rate of
the jth cortical neuron, as a function of the orientation
h of the grating pattern. This measure satisfies 06

CV½mj�6 1, with sharply tuned neurons possessing a CV
near 0 and broadly tuned near 1. Notice from Fig. 3 that

the neurons with the highest firing rates are located near

the pinwheel centers, and that (for this network of

simple cells) the most sharply tuned neurons are also

located near the pinwheel centers.

The cortical activity, and thus the ‘‘cortical operating
point’’ is perhaps best described by the conductances.

Fig. 4(a) shows the spatial distribution of the temporal

averages of the total conductance of the excitatory

neurons gT;E, while Fig. 4(b) shows the standard devia-
tion of the temporal fluctuations of these total conduc-

tances––again for drifting grating stimulation at high

contrast. In Fig. 4(a) for the average conductance, there

is rather flat uniform behavior in regions far from the



Fig. 4. The spatial distribution of the neurons’ total conductance

across the model cortical surface. Here, unlike the previous figure,

the stimulated orientation columns lie in the center of the figures.

(a) temporal averages; (b) standard deviations of the temporal fluc-

tuations.
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Fig. 5. The five components of the total conductance for a model

cortical neuron––without visual stimulation and for randomly flashed

stimuli (switched on after one second). (a) Excitatory: LGN (blue),

cortical interaction from layer 4Ca (red) and noise (green). (b) Inhib-
itory: cortical interaction from layer 4Ca (red) and noise (green).

Notice the difference in the vertical scales for (a) and (b).

D. McLaughlin et al. / Journal of Physiology - Paris 97 (2003) 237–252 243
pinwheel centers. For example, in the ‘‘center’’ region of

preferred orientation, centered at (1,1) in Fig. 4(a), note

the uniformly high conductance, and the uniformly low
conductance in the ‘‘corner’’ region of orthogonal to

preferred orientation (centered at (0,0) in Fig. 4(a)).

Note too that even regions of nonpreferred orientation

have conductances well above background values (400

s�1, as compared with background values of 230 s�1).

Near the pinwheel centers, the average conductance

changes rather rapidly in space, over distances of 100

lm, as set by the axonal arbors of the inhibitory neu-
rons. The fluctuations (Fig. 4(b)) are significantly larger

far from pinwheels than near. Fig. 4(a) and (b) show

that the modulation of the total conductance (between

its large value for stimulation at preferred orientation

and its smaller response at stimulation orthogonal to

preferred) is greater for far neurons than near. Indeed,

at preferred orientation:
gT;near ¼ 475� 90 s�1; gT;far ¼ 550� 100 s�1;

and at orthogonal to preferred:

gT;near ¼ 460� 70 s�1; gT;far ¼ 400� 80 s�1:

Different stimuli, such as drifting vs. randomly flashed

gratings, create very different and distinct conductance

maps on the cortex. For drifting grating stimulation,

there is not uniform conductance across the entire cor-

tical layer, but rather, different spatial regions within the

layer have different values of the conductance, with the

conductance changing most rapidly near pinwheel cen-
ters. In contrast, for randomly flashed grating stimuli,

the temporal mean and standard deviation of the tem-

poral fluctuations of the conductance are distributed

relatively uniformly throughout the entire layer (not

shown).

Numerical simulation also enables one to extract

components from the model’s response––components

which are very informative about cortical mechanisms,
yet are often difficult to extract from experimental

measurements. For example, in Fig. 5 we show the five

components of the total conductance (the excitatory

LGN, noise, and cortico-cortical conductances; and the

inhibitory noise and cortico-cortical conductances) for a

sample excitatory neuron in the simple cell model. A

high contrast stimulus is switched on at t ¼ 1 s, before
which the model cortex is in a background state in the
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Fig. 6. Responses to drifting gratings. This stimulus was a drifting

sinusoidal grating at optimal spatial frequency and orientation, at a

drift rate of 8 Hz and 100% contrast. From left to right, the panels

shown are cycle averaged spike rate, blocked membrane potential,

total conductance, excitatory conductance, and inhibitory conduc-

tance. (a) A model neuron near a pinwheel center. (b) A model neu-

ron far from a pinwheel center. Note the difference in scales for firing

rate.
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absence of visual stimulation. Note the balances in this

simple cell network––with cortical excitation dominated

by the LGN, yet with cortico-cortical inhibition domi-

nating all conductances.

Fig. 6 provides a different view of these components,
together with the firing rate and the (blocked to prohibit

spiking) membrane potential for a sample neuron near a

pinwheel center––cycle averaged relative to the period of

the drifting grating stimulus. Note again the dominance

of cortico-cortical inhibition. Also note that the cortico-

cortical excitation and inhibition are near constant, with

no temporal fluctuations on the time-scale of the sinu-

soidal grating. This elevated DC behavior of the cortico-
cortical conductances is an important response property

of our model cortex, which does not show cortico-

cortical inhibition in ‘‘push–pull’’ antagonism with the

LGN excitation.

Fig. 6(b) shows the same quantities as Fig. 6, but for

a sample neuron far from pinwheel centers.

3.1.1. Summary of results from large-scale model

Sample network responses include: The large-scale

model produces cortical maps with distinctive responses

between neurons near and far from orientation pinwheel

centers. The highest firing rates are found near. Simple

cells are more selective for orientation near, while tem-

poral fluctuations are more pronounced far. Cortico-
cortical conductances are basically DC in time, with no
temporal oscillations on the time-scale of the sinusoidal

drifting grating. In the next section, we will use the

coarse-grained network to identify and explain those

mechanisms within the model which are responsible for

these sample cortical responses.

3.2. Cortical mechanisms from coarse-grained represen-

tation

We begin our discussion of results for the reduced

coarse-grained representation with the observation that,

for drifting grating stimuli (Eq. (4)) with sufficiently high

contrast, the LGN conductance glgn (see Eq. (5)) can be
well approximated by the analytical expression

glgnðx; t; h;/Þ ¼ glgn HðxÞ; 2p
T

t
�

� /; h




’ C� 1

�
þ 1
2
1ð þ cos 2ðHðxÞ � hÞÞ

	 sin 2p
T

t
�

� /




ð12Þ

where T ¼ 2p=x is the temporal period of the stimulus,
HðxÞ denotes the angle of orientation preference of
neurons within the coarse-grained cell at cortical loca-

tion x, and / 2 ½0; 2pÞ denotes a random phase differ-

ence between the spatial phase of the grating and

preferred spatial phase of the neurons within the coarse-

grained cell x. The constant C � 80. (Note that since glgn
is p-periodic, this parameterization does not capture the
direction of grating drift.) Also note that the linear

growth of both mean and temporal modulation with

contrast � follows from the onset of strong rectification

in Eq. (5). This parameterization captures neither low

contrast behavior, where the temporal modulations

occur against a fixed background mean, nor the satu-

ration of individual LGN cells at high contrast. It does
capture an important feature of the input from LGN to

cortex [46]: because of the approximate axisymmetry of

the receptive field of a single LGN cell, its time-averaged

firing rate is independent of the orientation of the

drifting grating. Hence, the sum of activities of many

such cells, averaged over time, is likewise independent of

stimulus orientation [43,46], or

hglgniT ¼ �g: ð13Þ

That is, the time-averaged LGN input is independent of

stimulus orientation h, information on which is only
encoded in temporal modulations.
3.2.1. Cortico-cortical conductances are primarily DC

Since the forcing from the LGN is of the form

glgn ¼ glgnðHðxÞ; t � T
2p /; hÞ, we look for solutions mE;I to

the coarse-grained Eq. (6) that reflect the structure of



Fig. 7. From the full CG network: (a) The time-dependent firing rate

mEðtÞ over a stimulus cycle for CG-cells in Fig. 8 for drifting grating
stimulus at full contrast (� ¼ 1), and at preferred orientation. (b) The
expectation of the effective reversal potential VSðtÞ. The dashed line is
at the threshold to firing. (c,d,e) The expectations of gT, gE, and
gI, respectively. Cf. Fig. 6. Top: A CG-cell near a pinwheel center.

Bottom: A CG-cell far from a pinwheel center.
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this forcing, and are temporally periodic with arguments
shifted relative to the preferred phase /. That is,

mPðx; t; h;/Þ ¼ �mP x;
2p
T

t
�

� /; h



; P ¼ E; I: ð14Þ

As measured experimentally in [17], the distribution

of spatial phase is broad. In the large-scale model, it is

taken as a uniform distribution on ½0; 2pÞ, q ¼ 1=2p, in
which case phase averages become temporal averages,

that is h�mPi/ ¼ h�mPiT. This temporal average is over T ,
the period of �m, and is obviously independent of time t.
Further,

Z t

�1
dsGPðt � sÞh�mPi/ðx; sÞ ¼

Z t

�1
dsGPðt � sÞh�mPiTðxÞ

¼ h�mPiTðxÞ;

since GP has been normalized to unit area. The cortico-
cortical conductances then take the form

SPEKPE � h�mEiT and SPIKPI � h�mIiT; ð15Þ

i.e. are only spatial convolutions. The uniform distri-

bution of random spatial phases has led to the result

that, within the model, cortico-cortical conductances are

independent of time. Hence, a temporally modulated
‘‘push–pull’’ antagonism between excitation and inhi-

bition is not present in this model network.

3.2.2. Structure of the CG equations for drifting gratings

The coarse-grained Eq. (6) for drifting gratings now

take the simplified form

�mP x;
2p
T

t
�

� /; h



¼ NP x;

2p
T

t
�

� /; hmEiT; hmIiT



¼ NP glgn HðxÞ; 2p
T

t
��

� /; h



;

SPP0KPP0 � h�mP0 iTðxÞ


;

ð16Þ

for P¼E, I. Here NP denotes the different labeling of

the arguments of NP. As the only time and phase

dependence is through their difference, the phase aver-

age of Eq. (16) again converts to a time average, yielding

two closed fixed-point equations for the time-averaged

firing rates:

h�mPiTðxÞ¼ NP glgnðHðxÞ; t;hÞ;SPP0KPP0 � h�mP0 iTðxÞ
� �D E

T
;

ð17Þ

for P¼E, I. Eq. (17) are a beautifully simplified and
closed pair of fixed point equations for the temporally
averaged firing rates. Solution of these time-independent

equations allows for the reconstruction of time-depen-

dent firing rates from Eq. (16).
3.2.3. Some numerical simulations of CG network

Fig. 7 shows the components of the conductances

from the CG network, to be compared with Fig. 6 for

the full large-scale point neuron network. Overall, it

agrees quite well with the full point-neuron simulations

in capturing the differences near and far from the pin-

wheel center. Notice too the absence of temporal mod-

ulations in the cortico-cortical conductances, as well as

the dominance of inhibition.
For the CG network driven by drifting gratings, Fig.

8 shows the time-averaged firing rate, and CV, across
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model cortical surface. This is to be compared with Fig.

3 for the full point neuron model. Fig. 8(a) shows the

spatial distribution of time-averaged firing rates for

excitatory CG-cells in the CG network, while Fig. 8(b)

shows the associated circular variance of orientation

selectivity. Again, cells with the highest firing rates are
located near the pinwheel centers, and (for this network

of simple cells) the most sharply tuned cells are also

located near the pinwheel centers. Fig. 8(c) and (d) show

these distributions for the inhibitory CG-cells.

This CG representation provides results in good

agreement with the full large-scale point neuron model,

and it does so with significant savings in numerical

efficiency. For example, the CG maps of circular vari-
ance required (using a far from optimal relaxation

algorithm) 2–3 h of CPU time on a single processor SGI

(R10000 chip), versus 2–3 days on the same machine for

the large-scale point neuron code. Clearly such CG

representations may prove very useful as parameteriza-

tions for scale-up to more global cortical models.
3.3. Analytical understanding of cortical mechanisms

Numerical simulations from both the large-scale

point neuron model and its coarse-grained reduction

show distinct neuronal responses, depending upon the

neuron’s location relative to the orientation pinwheels
which tile the cortical layer. The magnitude of firing

rates, the degree of orientation selectivity (as captured

by circular variance), and the amplitudes of temporal

fluctuations all depend upon location within this tiling––

as is particularly apparent in the cortical maps of Figs. 3

and 4, and is also captured in the CG representation (as
in Fig. 8). Clearly, the mechanisms in the model which

result in this spatial dependence must arise from the

interaction of the regular map of orientation preference,

the random map of spatial phase preference, the spatial

scales of cortico-cortical synaptic interactions, and the

dominance of cortico-cortical inhibition. In this section

we show that the CG representation (Eqs. (16) and (17))

can be used to provide an analytical understanding of
these mechanisms within the model cortical network.

Here we will assume that the pinwheel structure fills the

entire plane, with its pinwheel center at the origin.
3.3.1. Special cases of the CG equations

Eqs. (6) and (10) are the general form of the CG

equations, with nonlinearity given by Eq. (7) (or its

generalizations to include other effects, such as back-
ground noise––see Shelley and McLaughlin [39]).

For simple analytical insight, it is best to use various

simplifications, or models, or these equations. For the

case of drifting grating stimuli these models take the

form:
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(I) The thresholded-linear equations, in which NP in
Eq. (7) is replaced by

NP ¼ fID;P � gT;Pgþ ð18Þ

where

ID;P � gT;P ¼ f x;
2p
T

t
�

� /



þ CPE � KPE � hmEiTðxÞ

� CPI � KPI � hmIiTðxÞ;

and

f x;
2p
T

t
�

� /



� �gR þ ðVE � 1Þglgn x;

2p
T

t
�

� /




CPE � ðVE � 1ÞSPE P 0

CPI � ð1� VIÞSPI P 0:

This is a useful model: first, it captures the nonlinearity

of thresholding, while replacing the nonlinear argument

with a linear one––the threshold membrane current.

Second, it retains monotonic dependencies upon excit-

atory and inhibitory conductances. And third, it retains

the proper requirement for threshold to firing, a positive

threshold membrane current, ID;P > gT;P. Eq. (18) is very
similar to the Wilson–Cowan mean-field models [48],
though with the inclusion of phase-averaged arguments.

(II) The far-field reduction: Consider a single orien-

tation hypercolumn filling the entire plane. Then far

from a pinwheel center, glgn (at a given phase) will
change very little over a coupling length-scale LPP0 en-
coded in KPP0 . (This statement is especially relevant to
the shorter inhibitory length-scales LPI.) In this case, one
can seek solutions hmPi/ that likewise vary slowly over
these length-scales, in which case

~gPP0 ðx; tÞ � SPP0 � hmiTðxÞ: ð19Þ

(This uses that KPP0 has unit spatial integral.) Then Eq.
(10), for example, will take the form of spatially local

fixed point equations,

mP x;
2p
T
t

��
�/


�
T

¼ NP x;
2p
T
t

��
�/;hmEðxÞiT;hmIðxÞiT


�
T

¼ NP glgn HðxÞ;2p
T
t

���
�/;h



;

SPP0 � hmP0 iTðxÞ

�

T

; ð20Þ

to be solved point-wise in x. Note that if glgn ¼ glgnðH;
t;/Þ, i.e. as with drifting grating stimuli, glgn depends
spatially only on the hypercolumn angular coordinate,

then the solutions hmPiT will also depend spatially only
upon H.
(III) The near-field model: In the neighborhood of a

pinwheel center, the synaptic sampling of cortical cells
occurs at all angles around the pinwheel center. We

model this by including an ‘‘angle’’ average in the syn-

aptic contributions, i.e.,
hmPiTðHÞ ¼ NP glgn H;
2p
T

t
���

�/



;SPP0 � hmP0 iT;H


�
T

:

ð21Þ

Here, we have assumed glgn depends spatially only on H,
as would be the case for drifting grating stimuli. Obvi-

ously, this expression can be averaged once more with

respect to H to yield a closed equation for hmPiT;H. This
model is very similar to one studied by Ben-Yishai et al.

[4], that they termed the ‘‘Hubel-Wiesel model with
uniform cortical inhibition’’.

3.3.2. Mechanisms for cortical responses

To show that the coarse-grained representation un-

veils the mechanisms which underly the striking spatial

distributions of the cortical responses, we model the

cortical layer as a single orientation hypercolumn that

fills the plane, with its pinwheel center at the origin. This
is reasonable for the case at hand as the length-scale of

monosynaptic inhibition, LPI, lies below a hypercolumn
width, as Fig. 1(a) well illustrates. Further, we consider

as the simplest model the thresholded-linear CG equa-

tion (18):

hmPiTðxÞ ¼ fID;Pðx; tÞ
�

� gT;Pðx; tÞgþ
�
T

¼
D

f ðHðxÞ; tÞ
�

þ CPE � ½KPE � hmEiT�ðxÞ

� CPI � ½KPI � hmIiT�ðxÞ
�þ

E
T

ð22Þ

for P¼E, I. Here it is worth recalling Eq. (13), which
implies that hf iT ¼ �f is independent of H. This implies
that in the absence of nonlinearity––above, the thres-
holding f�gþ––this model network could evince no ori-
entation selectivity.

As a very instructive example, we specialize to the

case of feed-forward inhibition by setting the interaction

constants CEE ¼ CIE ¼ CII ¼ 0. These are idealizations
that capture that the neuronal network is operating in a

regime of very small cortico-cortical excitation (~gEE;
~gIE � ~gIE), and interpreting the term ~gII as primarily a
normalization. In this idealized case, the inhibitory fir-

ing rate hmIiT is expressed directly in terms of the LGN
drive:

hmIiT ¼ hf þiTðHÞ; ð23Þ
and is only a function of H. This case yields for the
excitatory firing rate:

hmEiTðxÞ ¼ f ðHðxÞ; tÞ
��

� CEI

Z
d2x0

� KEIðx:� x0Þhf þiTðHðx0ÞÞ
�þ�

T

: ð24Þ

The geometry of firing rates and orientation
selectivity follows from this expression. First, the

cortico-cortical inhibition, CEIKEI � hf þiT, decreases

monotonically as one moves inward along the ray
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H ¼ 0, towards the pinwheel center; that is, from right
to left along the line (x, y ¼ 0), x > 0. Thus, by Eq. (24),
hmEiT increases along the ray H ¼ 0 as the pinwheel
center is approached. Crossing the center onto the ray

H ¼ p, the firing rate jumps down discontinuously

(while KEI � hf þiT is continuous at the pinwheel center,
hf þiT is not) and thence increases moving out along
H ¼ p. These features are observed in the point-neuron
and CG simulations of Fig. 3.
Now, consider excitatory CG-cells, both near and the

far from the pinwheel center: in these two cases, the

support of the spatial convolution in Eq. (24) relative to

the spatial variation of preferred orientation, leads to

the following observations:

Far from the pinwheel center: Consider jxj � LEI.
Eq. (19) then yieldsZ
d2x0KEIðx� x0Þhf þiTðHðx0ÞÞ ’ hf þiTðHðxÞÞ: ð25Þ

Thus, the cortico-cortical inhibition in the far-field re-

flects directly the LGN drive, and is both selective and
determined by HðxÞ.
Near the pinwheel center: For jxj � LEI,Z
d2x0KEIðx� x0Þhf þiTðHðx0ÞÞ

’
Z
d2x0KEIðx0Þhf þiTðHðx0ÞÞ

¼ 1

2p

Z 2p

0

hf þiTðHÞdH � hf þiT;H: ð26Þ

This last identity uses the axisymmetry of the kernel

KEIðxÞ about x ¼ 0, that KEI has unit integral, and that f
depends spatially only upon H. Thus, the near-field
cortico-cortical inhibition is determined nonlocally (as

an average over H) and is nonselective in H.
These two expressions show clearly that far neurons

should be inhibited very differently from near neurons––

with far neurons receiving inhibition from cells with

only a small range of orientation angles, and near neu-

rons receiving inhibition averaged over cells with all

orientation preferences. This difference of local vs. glo-

bal inhibition arises because only those inhibitory neu-

rons which are spatially close to an excitatory neuron
can inhibit it monosynaptically. This distance of influ-

ence is set by the axonal arbor of the inhibitory neuron

and the dendritic arbor of the excitatory neuron. Far

from the pinwheel center, only neurons of very similar

orientation preferences lie within this circle of influence,

whereas near the pinwheel center all angles of orienta-

tion preference lie within it (see Fig. 1(a)).

Inserting the above expressions into Eq. (24) pro-
duces the following expression for the firing rates of

these two CG-cells:

hmEiTðH; farÞ ’
D

f ðH; tÞ
�

� CEIhf þiTðHÞ
�þ

E
T

ð27Þ
hmEiTðH; nearÞ ’ f ðH; tÞ
n�

� CEIhf þiT;H
oþ

�
T

: ð28Þ

From these formulae the mechanisms which cause the

distinct spatial patterns of firing rate and orientation

selectivity become apparent. Consider CG-cells both

near and far from the pinwheel center, at both preferred

orientation Hpref ¼ 0, and orthogonal to preferred

Horth ¼ �p. Using that

hf þiTðHorthÞ6 hf þiT;H 6 hf þiTðHprefÞ; ð29Þ

from Eqs. (27) and (28), gives

hmEiTðHpref ; nearÞP hmEiTðHpref ; farÞ; ð30Þ

and that

hmEiTðHorth; nearÞ6 hmEiTðHorth; farÞ: ð31Þ

Using the monotonicity of KEI � hf þiT, among other
things, shows the further ordering

hmEiTðHorth; nearÞ6 hmEiTðHorth; farÞ
6 hmEiTðHpref ; farÞ
6 hmEiTðHpref ; nearÞ ð32Þ

with hmEiTðHpref ; nearÞ being the system’s highest firing
rate, and hmEiTðHorth; nearÞ the lowest. Again, these
firing rate properties are seen in the point-neuron sim-

ulations of [32]; see Fig. 3.

Inequalities (30) and (31) together suggest that the
form of inhibition near the pinwheel center underlies the

sharper selectivity found there. Further, the form of

the inhibitory contribution to Eq. (24) implies that these

differences in near and far field selectivity should occur

over a distance LEI from the pinwheel center. Indeed, the
dependence upon this characteristic length-scale can be

demonstrated with simulations of the CG network, as

shown in Fig. 9.
Thus, in this case of feed-forward inhibition, coarse-

grained analysis shows precisely that neurons near pin-

wheel centers are more selective for orientation than

those far, and that this property arises from the global

inhibition averaged over H near the pinwheel centers––

in contrast to the local inhibition in HðxÞ experienced by
Far neurons in the cell at x. Moreover, similar analysis

shows that temporal modulations of quantities such as
membrane potentials and currents are stronger far from

pinwheel centers than near (see Figs. 6 and 7).

While the analysis presented here is restricted to the

highly idealized case of feedforward inhibition, we show

in [39] that it can be extended to the full thresholded-

linear equations. Furthermore, we expect that much of

this analysis survives when using more nonlinear CG

systems such as Eqs. (6) and (7)––because one central
analytic property used here is the monotonicities of N
with respect to changes in excitatory and inhibitory

conductance.
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Fig. 9. From the full CG network, the spatial distribution of time-averaged excitatory firing rates for four different inhibitory coupling lengths:

LI � 70 lm (a), 100 lm (b, the standard value), 200 lm (c), and 400 lm (d).
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3.3.3. ‘‘Push–pull’’ antagonism

Within our model, drifting grating stimuli produce

responses for which the cortico-cortical conductances

have little temporal modulation, with no ‘‘push–pull’’
antagonism between excitation and inhibition, but with

a predominantly dc component to the inhibitory cortico-

cortical conductance. These properties are apparent

from the CG equations for drifting grating stimulus.

However, if the nonspecific, spatially isotropic cou-

pling which introduces the phase averages is replaced by

synaptic coupling which is phase selective, a ‘‘push–

pull’’ antagonism can result. For example, consider a
modified cortical network for which the synaptic cou-

pling is selective for spatial phase; more specifically, with

the coupling between excitatory and inhibitory neurons

half-cycles out of phase. For drifting grating stimuli, this

network with ‘‘anti-phase’’ selective coupling architec-

ture takes the form

mEðx; tÞ ¼ NE½x; t;mEðtÞ;mIðt � T=2Þ�
mIðx; t � T=2Þ ¼ NI½x; t � T=2;mEðtÞ;mIðt � T=2Þ�;

ð33Þ
where T is the temporal period of the drifting grating
and where

NP½x; t;mPðtÞ;mP0 ðt � T=2Þ�

¼ �gT;P log
fID;P � gT;Pgþ

gT;P þ fID;P � gT;Pgþ
�	 

gT;E � gR þ glgnðx; tÞ þ ~gEE½x; t;mEðtÞ�
�

þ ~gEI½x; t;mIðt � T=2Þ� þ �fP0
�

with analogous expressions for gT;I and for ID;P.

The cortico-cortical conductances themselves are given

by

~gEEðx; t;mEÞ

� SEE

Z
d2x0

Z t

�1
dsKEEðx� x0ÞGEðt� sÞmEðs;x0Þ;

~gEIðx; t;mIÞ

¼ SEI

Z
d2x0

Z t

�1
dsKEIðx� x0ÞGIðt� sÞmIðs� T=2;x0Þ;

ð34Þ

with analogous expressions for ~gIE, ~gII.
Clearly, the latter model will have inhibition in push–

pull antagonism with excitation. A version of ‘‘anti-

phase selective’’ synaptic coupling, combined with an

orientation specific coupling architecture, is the basis of

the model of [46]. The predictions for the temporal

traces of the conductances (elevated dc vs. push–pull
antagonism) of these two models provide distinct alter-

natives which clearly distinguish between these two

classes of synaptic coupling schemes.
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4. Discussion and conclusions

This article has provided concrete examples which

illustrate how post-processing of simulational data can

provide significant qualitative information about the

performance of large-scale model networks––informa-

tion about the models which would be difficult to obtain

experimentally for real cortices, such as two-dimen-

sional spatial distributions of cortical responses within
an internal cortical layer or the time-traces of individual

components of conductances. Further coarse-grained

reduction of the large-scale network provide more pre-

cise information about those cortical mechanisms which

underly the network’s performance––analytical infor-

mation, such as those relationships of regular and ran-

dom cortical maps with the spatial footprints of synaptic

interactions which together determine the spatial pat-
terns of orientation selectivity.

In addition to identifying the detailed cortical mech-

anisms of the model network, analysis of the CG-rep-

resentation can make specific predictions about the

consequences of these mechanisms. For example, in a

network with spatially isotropic synaptic interactions,

different performance of neurons near vs. far from pin-

wheel centers seems typical. CG analysis can also
delineate alternative mechanisms and their distinct

consequences. For example, in networks with spatially

isotropic synaptic connections, the broad random spa-

tial phase distribution yields cortico-cortical conduc-

tances with little temporal modulation under drifting

grating stimulation, prohibiting ‘‘push–pull’’ temporal

antagonism between excitation and inhibition. On the

other hand, synaptic coupling which is anti-phase spe-
cific (between excitatory and inhibitory neurons) would

produce push–pull antagonism. Experiment can then

check if a model’s predictions occur in nature, as well as

select between alternative models.

4.1. The status of experimental verification

Here we briefly summarize the status of experimental
results which directly impact the responses to drifting

grating stimuli described above. The anatomical and

physiological experimental constraints used to construct

the model are described in Section 2 and in [32]. Here we

focus on experiments relevant to the predicted mecha-

nisms of network response.

The predominance of cortical inhibition provides for

many of the characteristics of Simple cell response
within our model. Accurate values of in vivo conduc-

tances are extremely difficult to measure experimentally.

Hence, recent experiments have focused on the demon-

stration of large conductance changes under visual

stimulation [2,9,24,29]. These studies show conductance

increases by factors of two to three over background

values, with these increases dominated by inhibition.
Borg-Graham et al.’s [9,29] measurements indicate
further that the cortico-cortical inhibition is ON-OFF as

in our model. Within our model, a weakening of inhi-

bition makes Simple cells appear to be complex, con-

sistent with observations [21,33,42] of the consequences

of weakening inhibition pharmacologically.

Regarding ‘‘push–pull’’ antagonism between excita-

tion and inhibition, the interpretations of experimental

results are somewhat contradictory at present. Some
physiological studies have been interpreted to mean that

there is phase-sensitive or push–pull inhibition gener-

ated intracortically [2,24]. Recent experiments of

Anderson et al. [2] sought to measure Simple cell re-

sponses to drifting gratings. They report a temporal

modulation of synaptic inhibition in opposition to the

modulation of synaptic excitation. However, scrutiny of

the measurements in [2] indicates that there usually is a
large phase insensitive component of the inhibitory

conductance, consistent with the phase-insensitive in-

hibition that is observed in our model’s response to

drifting gratings. Furthermore, modulation of the mea-

sured cortico-cortical inhibition was observed primarily

when the cell was above threshold and firing; It is pos-

sible that their measurements of synaptic conductances

were made inaccurate by the spiking. Other direct
intracellular measurements by Borg-Graham and col-

leagues [9] indicate that inhibition in Simple cells is more

often spatial phase-insensitive than phase-sensitive (or

‘‘push–pull’’)––as Borg-Graham et al. indeed noted.

Further experimental measurements are clearly needed.

Our modeling work emphasizes that local synaptic

coupling architectures which are spatially isotropic

within the cortical layer can easily produce neuronal
responses that depend upon the neuron’s location rela-

tive to orientation map’s pinwheel centers. For exam-

ple, within our Simple cell model network, neurons in

the input layer 4Ca which are near the pinwheel centers
are more selective for orientation than those far (see

Fig. 3).

This specific observation is only for Simple cells. But

in fact, the input layer 4Ca contains approximately 50%
Simple and 50% Complex cells, while other layers of V1

in macaque contain as many as 70% Complex cells [37].

Currently, we are constructing a model network which

contains both Simple and Complex cells [44,45], with the

Complex cell subnetwork driven more by cortico-corti-

cal excitation (see [15]). Our preliminary results, as

illustrated by Fig. 10, indicate an oppositely arranged

spatial distribution for the Complex cell subpopulation.
Namely, while the subpopulation of Simple cells is bet-

ter tuned near the pinwheel centers, the Complex cells

are better tuned away from these centers. Again, it is

the interaction of the spatially isotropic synaptic cou-

plings with the structure of the orientation preference

map that produces these spatially dependent neuronal

responses.



Fig. 10. A preliminary result from a cortical model which manifests

both Simple and Complex cells. Across the model’s four orientation

hypercolumns, this shows the CVs of the Simple cells (left two hy-

percolumns) and Complex cells (right two hypercolumns) across the

cortical surface. Note that while Simple cells are more sharply selective

near the hypercolumn centers, the Complex cells are less selective.

D. McLaughlin et al. / Journal of Physiology - Paris 97 (2003) 237–252 251
Experimentally, such differences are just beginning
to be sought. Using tetrode measurements combined

with optical imaging, Maldonado et al. [31] studied

experimentally whether orientation selectivity differed

near and far from pinwheel centers. Using the half-

width of a Gaussian fit as an estimate for orientation

selectivity, they reported no substantial differences

near and far from pinwheel centers. However, their

study was in cat striate cortex, the laminar location of
the recorded cells was unknown, and the Simple-Com-

plex classification of these cells was not reported. Fur-

ther, we have found that half-width can be fairly

insensitive relative to other measures such as circular

variance. Recent work from the Sur laboratory [18] does

report a dependence of orientation preference plasticity

upon distance from pinwheel center. Further experi-

mental observations of responses relative to distance
from pinwheel centers are definitely needed––observa-

tions which carefully monitor the neurons laminar

location and cell type, as well as their distance from

pinwheel centers.
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