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Abstract. We present a reduction of a large-scale network model of visual cortex developed by McLaughlin,
Shapley, Shelley, and Wielaard. The reduction is from many integrate-and-fire neurons to a spatially coarse-grained
system for firing rates of neuronal subpopulations. It accounts explicitly for spatially varying architecture, ordered
cortical maps (such as orientation preference) that vary regularly across the cortical layer, and disordered cortical
maps (such as spatial phase preference or stochastic input conductances) that may vary widely from cortical neuron
to cortical neuron. The result of the reduction is a set of nonlinear spatiotemporal integral equations for “phase-
averaged” firing rates of neuronal subpopulations across the model cortex, derived asymptotically from the full model
without the addition of any extra phenomological constants. This reduced system is used to study the response of
the model to drifting grating stimuli—where it is shown to be useful for numerical investigations that reproduce,
at far less computational cost, the salient features of the point-neuron network and for analytical investigations
that unveil cortical mechanisms behind the responses observed in the simulations of the large-scale computational
model. For example, the reduced equations clearly show (1) phase averaging as the source of the time-invariance
of cortico-cortical conductances, (2) the mechanisms in the model for higher firing rates and better orientation
selectivity of simple cells which are near pinwheel centers, (3) the effects of the length-scales of cortico-cortical
coupling, and (4) the role of noise in improving the contrast invariance of orientation selectivity.
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1. Introduction

Many neurons in the mammalian primary visual cor-
tex respond preferentially to the particular orientation
of elongated visual stimuli such as edges, bars, or grat-
ings. So-called simple cells can act as nearly linear
transducers of such visual stimuli and respond prefer-
entially to spatial phase information. These selectivi-
ties, and others, are the bases for visual perception. The
neural mechanisms that underly them remain in debate
and are the object of both theoretical and experimental
investigations (for a recent review, see Sompolinsky

and Shapley, 1997). There are many important and
as yet unsettled foundational issues. These include
the nature of the geniculate input to cortex, the ori-
gin of ordered (and disordered) “cortical maps” (such
as orientation preference or retinotopy), the nature
and specificity of the cortical architecture, the im-
portance of feed-forward versus reciprocal coupling,
the relative weights of cortical excitation and inhi-
bition, sources of randomness, and the role of feed-
back among the laminae of V1, with the lateral
geniculate nucleus (LGN), and with higher visual
areas.
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In recent work we have developed a large-scale com-
putational model of an input layer of the macaque pri-
mary visual cortex (V1), for the purpose of studying
cortical response. The model describes a small local
patch (1 mm2) of the cortical layer 4Cα, which re-
ceives direct excitatory input from the LGN, and that
contains four orientation hypercolumns with orienta-
tion pinwheel centers. In McLaughlin et al. (2000), we
show that the model qualitatively captures the observed
selectivity, diversity, and dynamics of orientation tun-
ing of neurons in the input layer, under visual stimu-
lation by both drifting and randomly flashed gratings
(Ringach et al., 1997, 2001). In Wielaard et al. (2001),
we show that remarkably for a nonlinear network, the
model also captures the well known and important lin-
ear dependence of simple cells on visual stimuli, in a
manner consistent with both extracellular (De Valois
et al., 1982) and intracellular (Jagadeesh et al., 1997;
Ferster et al., 1996) measurements. In Shelley et al.
(2001), we show that cortical activity places our com-
putational model cortex in a regime of large conduc-
tances, primarily inhibitory, consistent with recent in-
tracellular measurements (Borg-Graham et al., 1998;
Hirsch et al., 1998; Anderson et al., 2000).

This model instantiates a particular conception of
the cortical network that is consistent with current un-
derstanding of cortical anatomy and physiology. The
cortical network is taken as being two-dimensional and
coupled isotropically and nonspecifically on subhy-
percolumn scales (<1 mm), with the length-scale of
monosynaptic inhibition smaller than that of excitation
(Fitzpatrick et al., 1985; Lund, 1987; Callaway and
Wiser, 1996; Callaway, 1998; Das and Gilbert, 1999)
and with cortico-cortical inhibition dominating cortico-
cortical excitation (in simple cells). The cortex receives
LGN input, weakly tuned for orientation, from a diverse
set of segregated subregions of on- and off-center cells
(Reid and Alonso, 1995). As is suggested by optical
imaging and physiological measurement, the orienta-
tion preference set in the LGN input forms orientation
hypercolumns, in the form of pinwheel patterns, across
the cortex (Bonhoeffer and Grinvald, 1991; Blasdel,
1992). The LGN input also confers a preferred spa-
tial phase, which varies widely from cortical neuron to
cortical neuron (DeAngelis et al., 1999).

Cortical models have been used to show how
orientation selectivity could be produced in cortex,
based on “center-surround” interactions in the orien-
tation domain (Ben-Yishai et al., 1995; Hansel and
Sompolinsky, 1998; Somers et al., 1995; Nykamp and

Tranchina, 2000; Pugh et al., 2000). However, these
theories did not attempt to use a more realistic corti-
cal circuitry. Our model’s lateral connectivity is also
very different from models based on Hebbian ideas
of activity-driven correlations (see, e.g., Troyer et al.,
1998).

The model’s “neurons” are integrate-and-fire (I&F)
point neurons and as such represent a considerable sim-
plification of the actual network elements. Even with
this simplifying approximation, simulations of such a
large-scale model (∼16,000 point-neurons) are very
time consuming, and parameter studies are difficult.
It is even harder to directly analyze the model net-
work mathematically and thereby obtain critical intu-
ition about cortical mechanisms. One purpose of this
article is to describe a reduction of our large-scale
model network to a simpler, spatially coarse-grained
system (CG) for firing rates of neuronal subpopulations
(though a detailed derivation will appear elsewhere)
(Shelley, McLaughlin, and Cair, 2001). This reduc-
tion allows for spatially varying architecture, cortical
maps, and input but also explicitly models the effect
of having quantities, such as preferred spatial phase or
stochastic input conductances (noise), that may be vary
widely from cortical neuron to cortical neuron (i.e.,
are disordered). This is very important, for example,
in capturing the “phase-averaging” that occurs in pro-
ducing cortico-cortical conductances in our I&F model
and that underlies its simple-cell responses (Wielaard
et al., 2001). The CG reduction has the form of a set of
nonlinear spatiotemporal integral equations for “phase-
averaged” firing rates across the cortex.

Here we use the CG reduction of our model of
macaque visual cortex to understand its response to
drifting grating stimulation, which is commonly used
in experiments to characterize a cortical cell’s orienta-
tion selectivity. As one example, under drifting grating
stimulation, the I&F model has cortico-cortical con-
ductances that are nearly time invariant (Wielaard et al.,
2001). The coarse-grained reduction shows clearly the
underlying mechanism for this invariance. The super-
position of cortical inputs acts as an average over the
preferred spatial phases of the impinging neurons, and
if the distribution of preferred spatial phases is taken
as being uniform, this phase average converts to a time
average—producing time-invariant cortico-cortical
input. In this manner, firing rates averaged over the
temporal period of the drifting grating become nat-
ural objects of study in our CG system. As a sec-
ond example, simple cells within the I&F model
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of McLaughlin et al. (2000) show intriguing spatial
patterns of selectivity and firing rate relative to pin-
wheel centers of hypercolumns: those nearer the cen-
ters have higher firing rates and are more selective for
orientation that those farther from the centers. We study
analytically stripped-down versions of the CG system
and show how in a network with strong cortical inhibi-
tion these observed patterns of response arise through
an interaction of the two-dimensional cortical architec-
ture with the orientation map of the input. Further, we
evolve numerically the fully nonlinear CG version of
our cortical network and show that it reproduces—at far
less computational cost—other salient features of our
full I&F network simulations. This suggests that such
coarse-grained systems will be useful in larger-scale
modeling of cortical response. Finally, we use these
simulations to study cortical response to changes in
stimulus contrast and the length-scales of synaptic cou-
pling. These studies show, for example, that contrast in-
variance in orientation selectivity is most pronounced
near pinwheel centers and that the smoothing effects
of noise can play a crucial role in enhancing contrast
invariance. In spite of the success of the CG reduction,
one should note that the coarse-grained asymptotics is
a large N limit; hence, it will not capture finite size ef-
fects (which one does see in numerical simulations of
the I&F system and most certainly in in vivo response).

While our coarse-graining approach is focused on
understanding a particular model of primary visual
cortex, several elements of our theoretical formalism
have been described before in different or more ide-
alized settings. For example, others have invoked a
separation of time-scales—say, “slow” synapses—to
convert conductance-based models of spiking neurons
to rate models (e.g., Ermentrout, 1994; Bressloff and
Coombes, 2000). Here we invoke a similar separation
of time-scales but one associated instead with the ob-
servation of large, primary inhibitory, conductances in
our model cortex when under stimulation (Wielaard
et al., 2001; Shelley et al., 2001). Others have also
employed coarse-graining arguments to study popula-
tion responses in networks of spiking neurons (e.g.,
Gerstner, 1995; Bressloff and Coombes, 2000; Laing
and Chow, 2001). Treves (1993) developed a “mean-
field” theory, based on population density theory, of
the dynamics of neuronal populations that are cou-
pled all-to-all and also outlined some formulational
aspects of including disordered network couplings. In
our model, a very important source of disorder is that of
the preferred spatial phases, which are set by the LGN

input to the cortical cells. Nykamp and Tranchina
(2000, 2001) used a population density model (due to
Knight et al., 1996) to study the recurrent feedback,
point-neuron model of cat visual cortex of Somers et
al. (1995), where the cortical architecture was reduced
to one-dimensional coupling in orientation. Nearly all
of these approaches bear some structural resemblance
to the phenomenological mean-field models as origi-
nally proposed by Wilson and Cowan (1973) and used,
for example, by Ben-Yishai et al. (1995) to study ori-
entation selectivity in a recurrent network with ring ar-
chitecture. Again, our approach focuses on our detailed
I&F model and uses asymptotic arguments to reduce
it to a CG description in terms of mean firing rates—a
reduction that does not introduce any additional phe-
nomological parameters into the model.

2. Methods

Here we describe briefly those components of our large-
scale neuronal network model of layer 4Cα that are
necessary for understanding its architecture and that are
relevant to its CG reduction. A more complete descrip-
tion is found in McLaughlin et al. (2000) and Wielaard
et al. (2001).

2.1. Basic Equations of the Model

The model is comprised of both excitatory and in-
hibitory I&F point neurons (75% excitatory, 25%
inhibitory) whose membrane potentials are driven by
conductance changes. Let v

j
E (v j

I ) be the membrane
potentials of excitatory (inhibitory) neurons. Each po-
tential evolves by the differential equation

dv
j
P

dt
= −gR v

j
P − g j

PE(t)
[
v

j
P − VE

]
− g j

PI(t)
[
v

j
P − VI

]
, (1)

together with voltage reset when dv j
P
(t) reaches “spik-

ing threshold.” Here P = E, I , and the super-
script j = ( j1, j2) indexes the spatial location of
the neuron within the two-dimensional cortical layer.
We first specified the cellular biophysical parameters,
using commonly accepted values: the capacitance
C = 10−6 F cm−2, the leakage conductance gR =
50 × 10−6 Omega−1 cm−2, the leakage reversal pote-
ntial VR = − 70 mV, the excitatory reversal poten-
tial VE = 0 mV, and the inhibitory reversal potential
VI = −80 mV. We took the spiking threshold as
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−55 mV, and the reset potential to be equal to
VR . The membrane potential and reversal poten-
tials were normalized to set the spiking threshold
to unity and the reset potential (and thus VR) to
zero, so that VE = 14/3, VI = −2/3, and generally
−2/3 ≤ v

j
E , v

j
I ≤ 1. The capacitance does not appear

in Eq. (1) as all conductances were redefined to have
units of s−1 by dividing through by C . This was done
to emphasize the time-scales inherent in the conduc-
tances. For instance, the leakage time-scale is τleak =
g−1

R = 20 ms. True conductances are found by multi-
plication by C .

2.2. Conductances

The time-dependent conductances arise from input
forcing (through the LGN), from noise to the layer,
and from cortical network activity of the excitatory
and inhibitory populations. These excitatory/inhibitory
conductances have the form

g j
PE(t) = g j

lgn(t) + g0
PE(t) + SPE

∑
k

K PE
j−k

×
∑

l

G E
(
t − t k

l

)
, excitatory, (2)

g j
PI(t) = g0

PI(t) + SP I

∑
k

K PI
j−k

×
∑

l

G I
(
t − T k

l

)
, inhibitory, (3)

where P = E or I . Here t k
l (T k

l ) denotes the time of
the lth spike of the kth excitatory (inhibitory) neuron,
defined as v

j
E (t k

l ) = 1 (v j
I (T k

l ) = 1).
The conductances g0

PP′ (t) are stochastic and repre-
sent activity from other areas of the brain. Their means
and standard deviations were taken as g0

EE = g0
IE =

6 ± 6 s−1, g0
EI = g0

II = 85 ± 35 s−1. These con-
ductances have an exponentially decaying autocorrela-
tion function with time constant 4 ms. Note that in the
model, as currently configured, the inhibitory stochas-
tic conductances are much larger than the excitatory.
This imbalance is consistent with a cortex in which
cortico-cortical inhibition dominates, producing cells
that are selective for orientation and the approximate
linearity of simple cells.

The kernels K PP′
k represent the spatial coupling be-

tween neurons. Only local cortical interactions (i.e.,
<500 µm) are included in the model, and these are as-
sumed to be isotropic (Fitzpatrick et al., 1985; Lund,
1987; Callaway and Wiser, 1996; Callaway, 1998), with

Gaussian profiles:

K PP′
j = APP′ exp

( − | jh|2/L2
PP′

)
, (4)

where | jh| = |( j1, j2)h| is a distance across the corti-
cal surface (h can be considered a distance between
neighboring neurons). Based on the same anatomi-
cal studies, we estimate that the spatial length-scale
of monosynaptic excitation exceeds that of inhibition,
with excitatory radii of order LPE ∼ 200 µm and in-
hibitory radii of order LPI ∼ 100 µm. These kernels
are normalized by choice of APP′ to have unit spatial
sum (i.e.,

∑
j K PP′

j = 1).
The cortical temporal kernels G P (t) model the time

course of synaptic conductance changes in response to
arriving spikes from the other neurons. In McLaughlin
et al. (2000) and Wielaard et al. (2001), they are taken
as generalized α-functions, with times to peak of 3 ms
for excitation and 5 ms for inhibition, and are based on
experimental observations (Azouz et al., 1997; Gibson
et al., 1999). The kernels are normalized to have unit
time integral.

The model’s behavior depends on the choice of
the cortico-cortical synaptic coupling coefficients:
SEE, SEI, SIE, SII . As all cortical kernels are normal-
ized, these parameters label the strength of interaction.
In the numerical experiments reported in McLaughlin
et al. (2000) and Wielaard et al. (2001), the strength
matrix (SEE, SEI, SIE, SII) was set to (0.8, 9.4, 1.5, 9.4).
This choice of synaptic strengths made the model sta-
ble, with many simple, orientationally selective cells.

2.3. LGN Response to Visual Stimuli

For drifting grating stimuli, the “screen” has intensity
pattern I = I (X, t ; θ, . . .) given by

I = I0[1 + ε sin [k · X − ωt + ψ]], (5)

where k = |k|(cos θ, sin θ ). Here θ ∈ [−π, π ) denotes
the orientation of the sinusoidal pattern on the screen,
ψ ∈ [0, 2π ) denotes its phase, ω ≥ 0 its frequency, I0

its intensity, and ε its “contrast.”
As a fairly realistic model for the processing of the

visual stimulus along the precortical visual pathway
(Retina → LGN → V 1), in McLaughlin et al. (2000)
and other works the input to a cortical neuron is de-
scribed by a linear superposition of the output of a
collection of model LGN neurons (i.e., convergent in-
put). The firing rate of each LGN cell is itself modeled
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as the rectification (since firing rates must be nonneg-
ative) of a linear transformation of the stimulus inten-
sity I (X, t), Eq. (5), where the space/time kernels were
chosen in McLaughlin et al. (2000) to agree with exper-
imental measurements in macaque monkey (Benardete
and Kaplan, 1999; Shapley and Reid, 1998). These fil-
ters have two possible polarities (“on-cells” or “off-
cells”) and are arranged spatially into segregated and
aligned sets of like polarity (Reid and Alonso, 1995).
The placement and symmetries of this spatial arrange-
ment confers, among other things, a preferred angle
of orientation θ j and preferred spatial phase φ j , in the
LGN input to the j th cortical neuron.

Here, we replace this detailed model of the input to
each cortical cell with a parametrization and note that
for sufficiently large contrast (ε ≥ 0.25) the LGN input
is captured approximately by

g j
lgn = Cε

(
1 + 1

2
(1 + cos 2(θ j − θ ))

× sin

(
2π

λ
t − φ j

))
, (6)

where λ = 2π/ω is the temporal period of the stimulus,
and φ j ∈ [0, 2π ) (with C ≈ 80 in McLaughlin et al.,
2000). (Note: glgn is π -periodic; the direction of grating
drift is not captured in this form.) This parametriza-
tion can be derived analytically, and its validity has
been tested and confirmed numerically (McLaughlin
and Kovacic, 2001). This derivation shows that the lin-
ear growth of both mean and temporal modulation with
contrast ε in Eq. (6) follows from the onset of strong
rectification of the spatial filters. This parametrization
captures neither low contrast behavior, where the tem-
poral modulations occur against a fixed background
mean, nor models the saturation of individual LGN
cells at high contrast. It does capture an important fea-
ture of the input from LGN to cortex. Because of the
approximate axisymmetry of the receptive field of a
single LGN cell, its average firing rate is independent
of the orientation of the drifting grating. Hence, the sum
of activities of many such cells, averaged over time, is
likewise independent of stimulus orientation (Troyer
et al., 1998; Sompolinsky and Shapley, 1997), or

〈glgn(·; θ )〉t = ḡ. (7)

That is, the time-averaged LGN input is independent
of stimulus orientation θ , information about which is
encoded only in temporal modulations.

Optical imaging of upper layer (2/3) cortical re-
sponse suggests that the preferred angle is mapped
across the cortex in the form of pinwheel patterns
that regularly tile the cortical layer (Misc3; Maldonado
et al., 1997). Figure 1 shows a 1 mm2 detail from
Blasdel (1992), containing four pinwheel patterns each
surrounding a pinwheel center. Optical imaging cou-
pled to electrode measurements suggest further that this
structure persists as an orientation hypercolumn down
through the cortical layer (Maldonado et al., 1997).
The apparently smooth change in orientation prefer-
ence across the cortical layer, at least away from pin-
wheel centers, is consistent with recent measurements
of DeAngelis et al. (1999) showing that preferred orien-
tation of nearby cortical neurons is strongly correlated.

In McLaughlin et al. (2000), a 1 mm2 region of 4Cα

is modeled as a set of four such orientation hyper-
columns, each occupying one quadrant (see Fig. 2).
Within the i th hypercolumn, θ j = ai ± � j/2, where
� is the angle of the ray from the pinwheel center.
The choice of sign determines the handedness of the
pinwheel center. This sign and ai are chosen so that
the mapping of preferred orientation is smooth across
the whole region, except at pinwheel centers (although
this continuity does not seem to be strictly demanded
by optical imaging data) (Blasdel, 1992; Bonhoeffer
and Grinvald, 1991). Thus, within a hypercolumn, the
angular coordinate � essentially labels the preferred
orientation of the LGN input.

The experiments of DeAngelis et al. (1999) show
that, unlike preferred orientation, the preferred spatial
phase φ of each cortical cell is not mapped in a regu-
lar fashion. Indeed, their work suggest that φ j is dis-
tributed randomly from neuron to neuron, with a broad
distribution. We assume that this broad distribution is
uniform.

3. Results

While amenable to large-scale simulation, the full-
network equations of the I&F point neuron model
(Eq. (1)) are typically too complex to study analyti-
cally. We use instead an asymptotic reduction of the
full network to a spatially coarse-grained network, ex-
pressed in terms of average firing rates over coarse-
grained cells (termed a CG-cell). This reduced descrip-
tion is more amenable to analytical investigation and
easier to study numerically. The asymptotic methods
that produce the coarse-grained system include multi-
ple time-scale analysis, “Monte-Carlo” approximation
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Figure 1. From Blasdel (1992) (with author’s permission), a detail from an optical imaging of the orientation mapping across the superficial
layers of macaque V1, over an area ∼1 mm2. The image shows four orientation hypercolumns with pinwheel centers. The superimposed circles
show the estimated length-scale of monosynaptic inhibition in the local connections of layer 4Cα.

Figure 2. From the point-neuron network simulations of McLaughlin et al. (2000), the spatial distribution of time-averaged firing-rates (left
panel) and of circular variance (right panel) across the model cortical surface (∼1 mm2).
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by integrals of the summations in the conductances
(Eq. (3)), such as

g̃EE = SEE

∑
k,l

K EE
j−k G E

(
t − t k

l

)
,

and a probabilistic closure over subpopulations.
Another part of this reduction involves consideration

of dynamical time-scales in cortical response. There
are three important time-scales in Eq. (1): the time-
scale of the stimulus modulation, τlgn = O(102) ms;
a shorter time scale of the cortical-cortical interaction
times (and the noise, presumably synaptically medi-
ated), τs = O(4 ms) (Azouz et al., 1997; Gibson et al.,
1999); and the shortest, the response time of neurons
within an active network, τg = O(2 ms) (Wielaard
et al., 2001; Shelley et al., 2001). We emphasize that
the latter is a property of network activity. While the
separation of τs and τg is only a factor of two, we have
found that this is sufficient to cause cortical neurons to
respond with near instantaneity to presynaptic cortical
input (Shelley et al., 2001). In our reduction analysis,
we assume and use this separation of time scales,

τg

τs
,

τg

τlgn
� 1,

to help relate conductances to firing rates.
While the technical details of this reduction

are lengthy and will appear elsewhere (Shelley,
McLaughlin, and Cai, 2001), we outline some of the
critical steps in the coming section.

3.1. A Coarse-Grained Network

Cortical maps such as orientation preference, spatial
frequency preference, and retinotopy are arranged in
regular patterns across the cortex. Thus, we partition the
two-dimensional cortical layer into CG-cells, each of
which is large enough to contain many neurons and yet
small enough that these mapped properties are roughly
the same for each neuron in the CG-cell. These mapped
properties are then treated as constants across each CG-
cell. This is in opposition to quantities such as preferred
spatial phase φ, which seem to be distributed randomly
from cortical neuron to cortical neuron. Accordingly,
we also assume that within each CG-cell there are suf-
ficiently many neurons that the distributions of disor-
dered quantities, such as preferred spatial phase, are
well sampled.

3.1.1. The Preferred Spatial Phase. We first give the
result for the case of only one disordered quantity—
the preferred spatial phase—and then indicate how the
results are modified if there are other disordered fields,
such as the random input conductances. Before intro-
ducing the spatially coarse-grained tiling, we partition
the N E excitatory (N I inhibitory) neurons in the layer
into subsets with like spatial phase preference. Divide
the interval [0, 2π ) of preferred spatial phases into P
equal subintervals of width �φ = 2π/P:

�p ≡ [(p − 1)�φ, p�φ), p = 1, . . . , P,

and partition the set of N E excitatory neurons as

SE,p ≡ {all excitatory neurons with φ ∈ �p},
for p = 1, . . . , P.

If N E,p is the number of neurons in SE,p, then N E =∑P
p=1 N E,p. The inhibitory neurons are partitioned

similarly, with like notation (N I , N I,p,S I,p).
With this partitioning of spatial phase preference, a

typical cortico-cortical conductance takes the form

g̃ j
EE(t) ≡ SEE

N E∑
k=1

∑
l

K EE
j−k G E

(
t − t k

l

)

= SEE

P∑
p=1

∑
kp∈SE,p

∑
l

K EE
j−kp

G E
(
t − t

kp

l

)
, (8)

where the sum over l is taken over all spikes of the kpth
neuron, and the subsequence {kp} runs over the N E,p

neurons in SE,p.
Next, let {Nκ , κ = (κ1, κ2) ∈ Z2} denote the parti-

tioning of the cortical layer into coarse-grained spatial
cells (CG-cells), (see Fig. 3)—with the κth CG-cell
containing Nκ = N E

κ + N I
κ excitatory and inhibitory

neurons, of which N p
κ = N E,p

κ + N I,p
κ have preferred

spatial phase φ ∈ �p. Clearly,

N E
κ =

P∑
p=1

N E,p
κ and N I

κ =
P∑

p=1

N I,p
κ .

Thus, each excitatory neuron in the κth CG-cell with
preferred spatial phase φ ∈ �p is labeled by the (vec-
tor) sum kp = κ + k ′

p, k ′
p ∈SE,p

κ , those excitatory neu-
rons in the κth CG-cell with preferred spatial phase in
�p.
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Figure 3. A schematic illustrating the tiling of the cortical surface
into coarse-grained cells and in particular the representative κth CG-
cell. The circles represent excitatory model neurons, with the open
circles representing those model neurons whose preferred spatial
phase sits in a single phase bin—say, SE

1 .

Returning to Eq. (8), then

g̃ j
EE(t) = SEE

P∑
p=1

∑
κ,l

∑
k ′

p∈SE,p
κ

K EE
j−(κ+k ′

p)

× G E
(
t − t

κ+k ′
p

l

)
. (9)

We assume now that the spatial interaction kernels are
nearly constant over each CG-cell—i.e.,

K EE
j−(κ+k ′

p) � K EE
j−κ , (10)

—and that the spike times t k
l are of the form

t
κ+k ′

p

l � τ p
κ (t) · l + ψκ+k ′

p
, (11)

where τ
p
κ (t) is the (slowly varying) mean interspike

time for the (excitatory) neurons in the κth CG-cell
with preferred spatial phase φ ∈ �p. Here it is assumed
that the phases ψκ+k ′

p
statistically cover the interval

[tκ
l , tκ

l+1] uniformly, as k ′
p runs over SE,p

κ . Thus, the
sum over k ′

p (the excitatory neurons in the κth CG-
cell) reduces to a temporal phase average that can be
evaluated with Monte-Carlo integration (Feller, 1968):

1

N

N∑
i=1

f (ti ) � 1

L

∫ L

0
f (t) dt ±

√
〈 f 2〉 − 〈 f 〉2

N
, (12)

where {ti ; i = 1, 2, . . . , N } denotes N points, chosen
independently from a uniform distribution over the in-
terval [0, L], and

〈F〉 ≡ 1

N

N∑
i=1

F(xi ).

In this manner, Monte Carlo integration shows that
the sample cortico-cortical conductance g̃EE(t) is ap-
proximated by

g̃ j
EE(t) � SEE

P∑
p=1

∑
κ,l

N E,p
κ K EE

j−κ

×
∫ tκ

l+1

tκ
l

G E (t − s)
1

τ
p
κ (s)

ds

� SEE

∑
κ,l

K EE
j−κ

×
∫ tκ

l+1

tκ
l

G E (t − s)

[
P∑

p=1

N E
p,κ

1

τ
p
κ (s)

]
ds

� SEE

∑
κ,l

N E
κ K EE

j−κ

×
∫ tκ

l+1

tκ
l

G E (t − s)〈mκ〉φ(s) ds

� SEE

∑
κ

N E
κ K EE

j−κ

×
∫ t

−∞
G E (t − s)〈mκ〉φ(s) ds, (13)

where

mκ (φ) = 1

τ
p
κ

, for φ ∈ �p

〈mκ〉φ ≡
∫

mκ (φ) ρ(φ) dφ � 1

N E
κ

P∑
p=1

N E,p
κ

1

τ
p
κ (s)

,

and ρ(φ) is the probability density associated with φ.
Finally, for convenience we adopt a continuum notation
and define

g̃EE(x, t) = KEE[〈m〉φ](x, t)

≡ SEE KEE ∗ G E ∗ 〈m〉φ(x, t)

≡ SEE

∫
d2x′

∫ t

−∞
ds KEE(x − x′)

× G E (t − s)〈m〉φ(x′, s), (14)

where x denotes the spatial location of the κth CG-cell
within the cortical layer.

Inserting expressions such as Eq. (14) into Eq. (1)
and rearranging them yield a voltage equation of the
form

dv
j
P

dt
= −g j

T

[
v

j
P − V j

S

]
. (15)
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Here the total conductance gT and the “effective re-
versal potential” VS are expressions in terms of coarse-
grained conductances; hence, they depend explicitly on
the firing rates m P (x, t) rather than on the firing times.
We refer to the next step in the derivation of a closed
system of equations for these firing rates alone as the
“closure step”—a step that eliminates the voltage v

j
P ,

leaving only equations in terms of m P (x, t).
This step begins with the observations that under

high-contrast visual stimulation, the total conductance
increases substantially (Borg-Graham et al., 1998;
Hirsch et al., 1998; Anderson et al., 2000). Thus, the
relaxation time-scale [gT ]−1 can be very short if the
total conductance is sufficiently high. That is, corti-
cal activity can create an emergent time-scale that is
even shorter than synaptic time-scales (Wielaard et al.,
2001; Shelley et al., 2001). Under the assumption that
this relaxation time-scale is short enough that it is well-
separated from the longer synaptic time-scales over
which gT and VS vary, Eq. (15) can be integrated be-
tween successive spikes with gT and VS held constant.
This is because the time between spikes (for VS > 1)
likewise scales with the rapid relaxation time. This in-
tegration yields a logarithmic expression for the aver-
age interspike interval, whose inverse is the firing rate
m P (x, t).

In this manner, with asymptotic techniques (includ-
ing multiple time-scale analysis, Monte Carlo approx-
imation, and a probabilistic closure), the full network
of I&F neurons can be reduced to coarse-grained equa-
tions for the average excitatory and inhibitory firing
rates of neurons in the CG-cell at x:

m P (x, t ; φ) = N (glgn(x, t ; φ), g̃PP′ (x, t)) (16)

for P = E and I , and where the free index P ′ denotes
dependence of the RHS on both P ′ = E and I . Here,

N = −gT (x, t)

log
(

{ID (x,t)−gT (x,t)}+
gT (x,t)+{ID (x,t)−gT (x,t)}+

) , (17)

where

gT,P (x, t) ≡ gR + glgn(x, t) +
∑

P ′
(g̃PP′ (x, t) + f̄ P ′ )

(18)

is the total conductance, and

ID,P (x, t) ≡ VE glgn(x, t) +
∑

P ′
VP ′ (g̃PP′ (x, t) + f̄ P ′ )

(19)

is the so-called difference current (Wielaard et al.,
2001), as it arises as the difference of excitatory and
inhibitory synaptic currents.

Several points are worth noting:

• The thresholding in Eq. (17) is taken to imply that
N = 0 if ID(x, t) − gT (x, t) ≤ 0. This latter quan-
tity is the threshold membrane current, obtained by
setting v j = 1 in Eq. (1), and its positivity is a neces-
sary condition for cell spiking. (In dimensional units,
the threshold current would be ID(x, t) − V̄ gT (x, t),
where V̄ is the spiking threshold.) Note that for pos-
itive threshold current, N = −gT / log[1 − gT /ID].

• As we considered the preferred phase φ as the
only disordered quantity across a CG-cell, we have
included in the above only the means, f̄ P ′ , but
not the noisy fluctuations of the stochastic input
conductances.

• The quantity VS = ID /gT , a ratio of weighted synap-
tic conductances, is an effective reversal potential
that, under the separation of time-scales assumption
of this analysis, closely approximates the intracellu-
lar potential of a cell when subthreshold or blocked
from spiking.

• It can be shown that N increases (decreases) mono-
tonically with increasing excitatory (inhibitory)
conductance.

3.1.2. Including Another Disordered Quantity.
Thus far we considered only the phase φ j as being dis-
ordered. Now assume that, in addition, the stochastic
conductance contributions are stationary processes that
are independent and identically distributed from corti-
cal neuron to cortical neuron and that their temporal
fluctuations do not break the separation of time-scales
constraint (this is valid because these fluctuations are on
the synaptic time-scales). These fluctuations can then
be averaged over a CG-cell in a manner essentially
identical as that for the preferred spatial phase. Write
these conductances as

f j
PP′ (t) = f̄ P ′ + η

j
P ′ (t),

where f̄ P denotes the mean and ηP the random fluc-
tuations (of expectation zero), with density FP (η) dη.
Averaging over the many neuronal contributions within
a CG-cell then samples the distribution of ηE and ηI .
Equation (16) becomes generalized as an equation for a
CG-cell firing rate n P (x, t ; φ, ηE , ηI ), with 〈m P ′ 〉φ re-
placed by 〈n P ′ 〉φ,ηE ,ηI

(as with the phase with density ρ,
averages are defined with respect to the densities FP ),
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and with f̄ P ′ replaced by f̄ P ′ + ηP ′ in Eqs. (18) and
(19) for gT and ID , respectively. As we are interested
here only in the “noise-averaged” quantities, we define

m P (x, t ; φ) = 〈n P〉ηE ,ηI
.

The equation for m P (x, t ; φ) is again Eq. (16), but with
N redefined as

N ≡
∫

ID>gT

−gT

log[1 − gT /ID]
FE (ηE ) FI (ηI ) dηE dηI .

(20)

It is important to note that describing the densities
FP is generally nontrivial. If the “noise” is being gener-
ated by, say, a synaptically mediated, Poisson-spiking
process, then these densities will be highly dependent
on the form of the postsynaptic conductance course,
G P . Only in the high-rate limit can FP be described
easily through a version of the central limit theorem.
And even in that case, finding m P (x, t ; φ) requires the
evaluation of two-dimensional integrals, which while
numerically tractable, is expensive. In the case where
the densities FP are uniform, the two-dimensional in-
tegrals in Eq. (20) can be analytically reduced to one-
dimensional integrals through an explicit integration,
thus considerably ameliorating the cost.

3.1.3. Averaging Closes the CG Equations. It is
an important mathematical property of this reduced,
coarse-grained system that the coarse-grained equa-
tions (16) can be averaged with respect to φ to yield
closed space- and time-dependent equations for the
phase-averaged firing rates:

〈m P〉φ(x, t) = 〈N (glgn(x, t ; φ), g̃PP′ (x, t))〉φ. (21)

Thus, these systems can be solved for phase-averaged
quantities directly through Eq. (21) and then by recon-
structing phase-dependent quantities through Eq. (16).
Here we have not been specific about the spatial phase
dependence of glgn. For drifting gratings, as suggested
earlier, it will be modeled by a temporal phase shift but
more generally will depend strongly on the stimulus
class; the phase dependence of glgn for contrast reversal
stimuli is considerably different and more complicated
(see Wielaard et al., 2001, Fig. 2) than for drifting grat-
ings and poses a rigorous test for simple cell response.

Equations (16) and (21) are the main results of this
section. They constitute coarse-grained integral equa-
tions for the local firing rates m E (x, t) and m I (x, t).

These coarse-grained results can be seen as the limit of
a population density formulation, under the separation
of time-scales induced by the model visual cortex be-
ing in a high-conductance state (Shelley, McLaughlin,
and Cai, 2001). While these coarse-grained equations
are also similar to mean-field models for firing rates,
differences and distinctions include (1) their derivation
from the full I&F network, without the introduction of
phenomenological parameters; (2) the use of a high-
conductance cortical state to achieve a temporal scale
separation; and (3) the simultaneous presence of or-
dered spatial maps (such as for orientation preference)
and disordered spatial maps (such as for spatial phase
preference).

This CG reduction is quite specific to capturing key
elements of our large-scale model of an input layer of
visual cortex. The CG equations (16) retain dependence
on spatial location within the two-dimensional cortical
layer through their dependence on the cortical coor-
dinate x, and interactions are relative to cortical loca-
tion. This is far from “all-to-all.” The form of the input
reflects our understanding of the processing of visual
information in the precortical pathway. An important
structural trait is that cortico-cortical interaction terms
depend only on the spatial phase-averaged firing rates
〈m P〉φ . This is essential to the analysis that follows.
Again, this average arises because the CG-cells contain
neurons with measured properties (such as orientation
preference) that are well ordered and others (such as
spatial phase) that are disordered. Within each CG-cell,
we average over the disordered properties.

3.1.4. Special Cases of the CG Equations. Equa-
tions (16) and (21) are the general form of the
CG equations, with nonlinearity given by Eq. (17)
or Eq. (20). We find it useful to consider various
simplifications, or models, or these equations:

1. The thresholded-linear model Here, NP in
Eq. (17) is replaced by

N = {ID(x, t ; φ) − gT (x, t ; φ)}+, (22)

where

ID,P − gT,P = f (x, t ; φ)

+ CPE · KPE ∗ G E ∗ 〈m E 〉φ(x, t)

− CPI · KPI ∗ G I ∗ 〈m I 〉φ(x, t),
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and

f (x, t ; φ) ≡ −gR + (VE − 1) glgn(x, t ; φ)

CPE ≡ (VE − 1)SPE ≥ 0

CPI ≡ (1 − VI )SPI ≥ 0.

This is a useful model, even though it is not an analyti-
cal reduction of the full CG equations. First, it captures
the nonlinearity of thresholding, while replacing the
nonlinear argument with a linear one—the threshold
membrane current. Second, it retains monotonic de-
pendencies on excitatory and inhibitory conductances.
And third, it retains the proper requirement for thresh-
old to firing, a positive threshold membrane current,
ID > gT ). Equation (22) is very similar to the Wilson-
Cowan mean-field models (Wilson and Cowan, 1973),
though with the inclusion, again, of phase-averaged
arguments.

2. The far-field reduction Consider a single ori-
entation hypercolumn filling the entire plane. Then far
from a pinwheel center, glgn (at a given phase) will
change very little over a coupling length-scale LPP′
encoded in KPP′ (this statement is especially relevant
to the inhibitory length-scales LPI ; see Fig. 1). In this
case, one can seek solutions 〈m P〉φ that likewise vary
slowly over these length-scales, in which case

g̃PP′ (x, t) ≈ SPP′ G P ∗ 〈m P ′ 〉φ(x, t)

= SPP′

∫ t

−∞
ds G P ′ (t − s)〈m ′

P〉φ(x, s), (23)

where only the temporal convolution remains. (This
uses that KPP′ has unit spatial integral.) Then Eq. (21),
for example, will take the form of spatially local fixed
point equations,

〈m P〉φ(x, t) = 〈N (glgn(x, t ; φ),

SPP′ G P ′ ∗ 〈m P ′ 〉φ(x, t))〉φ, (24)

to be solved point-wise in x. Note that if glgn =
glgn(�, t ; φ) (i.e., as with drifting grating stimuli), glgn

depends spatially only on the hypercolumn angular co-
ordinate, then the solutions 〈m P〉φ will also depend
spatially only on �.

3. The near-field model In the neighborhood of a
pinwheel center, the synaptic sampling of cortical cells
residing at all angles around the pinwheel center is part
of the special character of response there. Accordingly,
we model responses in that neighborhood by retaining

only the angular part of the spatial convolution and
seeking solutions of the equations:

〈m P〉φ(�, t) = 〈N (glgn(�, t ; φ),

SPP′ G P ′ ∗ 〈m P ′ 〉φ,�(t))〉φ. (25)

Here, we have assumed that glgn depends spatially only
on �, as would be the case for drifting grating stim-
uli. Obviously, this expression can be averaged once
more with respect to � to yield a closed equation for
〈m P〉φ,�. This model is very similar to one studied by
Ben-Yishai et al. (1995), which they termed the “Hubel-
Wiesel model with uniform cortical inhibition.”

The far- and near-field models are very useful for
exploring differences in firing-rate patterns near and
far from the pinwheel center.

3.2. The Special Case of Drifting Grating Stimuli

Visual stimulation by drifting spatial gratings is fre-
quently used experimentally to characterize the orienta-
tion selectivity of cortical neurons. The measured neu-
ronal response is typically the neuron’s time-averaged
firing rate:

〈m〉t (θ ) = Number of spikes in time T

T
,

where T encompasses many cycles of the drifting grat-
ing, and θ is the orientation of the grating. The depen-
dence of 〈m〉t on θ characterizes the neuron’s selectiv-
ity for orientation. 〈m〉t is a very natural object to study
within our coarse-grained equations.

The stimulus has temporal period λ = 2π/ω, and the
model cortical network is driven by LGN stimulation
(given in Eq. (6)) at the same period, which we denote
as

glgn(x, t ; θ, φ) = glgn

(
�(x), t − λ

2π
φ; θ

)
, (26)

where the dependence on spatial wavenumber k, in-
tensity I0, and contrast ε have been suppressed in the
notation.

We seek solutions m E,I to the coarse-grained
Eq. (16) that reflect the structure of the LGN forcing—
that is, are temporally periodic—and shifted relative to
the preferred phase φ:

m P (x, t ; θ, φ) = m̄ P

(
x, t − λ

2π
φ; θ

)
, P = E, I.

(27)
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We now restrict our attention to a uniform phase dis-
tribution on [0, 2π ), ρ = 1/2π , in which case phase
averages become temporal averages—that is, 〈m̄ P〉φ =
〈m̄ P〉t . This temporal average is over λ, the period of m̄,
and given that periodicty is equivalent to a long-time
average. Further,

∫ t

−∞
ds G P (t − s)〈m̄ P〉φ(x, s)

=
∫ t

−∞
ds G P (t − s)〈m̄ P〉t (x) = 〈m̄ P〉t (x).

The cortico-cortical conductances then take the form

SPE KPE ∗ 〈m̄ E 〉t and SPI KPI ∗ 〈m̄ I 〉t (28)

and are thus independent of time and are only spa-
tial convolutions. This is an important result that re-
flects fundamentally the architecture of the model and
is an approximate feature of our I&F simulations (see
Wielaard et al., 2001, Fig. 7).

The coarse-grained Eq. (6) now take the simplified
form

m̄ P

(
x, t − λ

2π
φ; θ

)
= N

(
glgn

(
�(x), t − λ

2π
φ; θ

)
,

SPP′ KPP′ ∗ 〈m̄ P ′ 〉t (x)

)
, (29)

for P = E, I . As the only time and phase dependence
is through their difference, the phase average of Eq. (29)
again converts to a time average, yielding two closed
fixed-point equations for the time-averaged firing rates:

〈m̄ P〉t (x) = 〈N (glgn(�(x), t ; θ ),

SPP′ KPP′ ∗ 〈m̄ P ′ 〉t (x))〉t , (30)

for P = E, I . Equation (20) is a beautifully simplified
and closed pair of fixed-point equations for the tem-
porally averaged firing rates. Solution of these time-
independent equations allows for the reconstruction of
time-dependent firing rates from Eq. (29). These ex-
pressions are the basis for our analytical and numerical
studies, in subsequent sections, on the character of our
model’s firing-rate patterns and selectivity.

Though we do not directly investigate it here, the
linear stability problem associated with these special
solutions is relatively tractable since 〈m̄ P〉t (x) can be
considered as the base state, which is time and phase
independent. Let m P = m̄ P + εm̃, where ε � 1.

We assume that the linearized problem is well set—
i.e., that there exist unique functions δN /δg̃PP′ such
that

N (glgn, KPE[〈m E 〉φ], KPI[〈m I 〉φ])

= N (glgn, SPE KPE ∗ 〈m̄ E 〉t , SPI KPI ∗ 〈m̄ I 〉t )

+ ε
∑

P ′=E,I

δN
δg̃PP′

(glgn, SPE KPE ∗ 〈m̄ E 〉t ,

SPI KPI ∗ 〈m̄ I 〉t ) · KPP′ [〈m̃ P ′ 〉φ] + o(ε),

where KPP′ is the space-time convolution defined in
Eq. (14). Note that the only phase dependence in
this expansion is through the LGN forcing: glgn = glgn

(�(x), t − λ
2π

φ; θ ). Thus, phase-averaging of this ex-
pansion yields

〈m̄ P〉t + ε
∑

P ′ = E,I

〈
δN
δg̃PP′

〉
t

(x)

· KPP′ [〈m̃ P ′ 〉φ](x, t) + o(ε). (31)

Finally, substituting this expansion in Eq. (21) and
dropping the o(ε) error term yields the linearized evo-
lution for m̃:

〈m̃ P〉φ(x, t) =
∑

P ′=E,I

〈
δN
δg̃PP′

〉
t

(x) · KPP′ [〈m̃ P ′ 〉φ](x, t).

(32)

Rather surprisingly, Eq. (32) is a constant coefficient in
time problem for the perturbation 〈m̃〉φ , and is in prin-
ciple solvable by separation of variables techniques.
This simplicity arises because of the phase averaging
nature of our network.

The simplicity of these equations in the drifting grat-
ing case results from the replacement of phase averages
with time averages. This replacement is exact when the
distribution of preferred spatial phase uniformly cov-
ers [0, 2π ). As measured experimentally in DeAngelis
et al. (1999), this phase distribution is broad, indicat-
ing that it is a reasonable approximation to assume a
uniform phase distribution.

3.2.1. Understanding Spatial Patterns of Firing and
Selectivity. A striking feature of our large-scale sim-
ulations of the model cortex is the distinctive spatial
distributions of firing rates and orientation selectiv-
ity, relative to the orientation pinwheel center loca-
tions. Figure 2 shows the firing rates and orientation



Coarse-Grained Reduction and Analysis of a Network Model of Cortical Response 109

selectivity across a region containing four orientation
hypercolumns (from McLaughlin et al., 2000). Here,
orientation selectivity is measured by the circular vari-
ance of the tuning curves, defined as

CV [〈m〉t (x)] ≡ 1 −
∣∣∣∣ m̂2(x)

m̂0(x)

∣∣∣∣,
where m̂k(x) denotes the kth Fourier coefficient with
respect to the stimulus orientation θ—i.e.,

m̂k(x) ≡ 1

2π

∫ 2π

0
eikθ 〈m〉t (x; θ ) dθ.

By construction, 0 ≤ CV ≤ 1. If a cell shows little se-
lectivity in θ (that is, the tuning curve is nearly flat
in θ ), then its CV will be nearly one. Conversely, if
the cell is sharply selective, with its tuning curve close
to a δ-function centered at the cell’s preferred angle,
then its CV will be close to zero. More generally,
CV measures the amplitude of modulation, as mea-
sured by m̂1, relative to its mean. Increasing this am-
plitude of modulation typically decreases the circular
variance.

Figure 2 shows 〈m〉t and CV[〈m〉t ] across the model
cortex for the I&F network of simple cells consid-
ered by McLaughlin et al. (2000). It shows that the
highest firing rates occur near the pinwheel centers,
along the maximally excited orientation column, and
that (with identically tuned input across the cortex) the
sharpest orientation tuning (as measured by low CVs)
occurs near the pinwheel centers. Both of these prop-
erties result from cortico-cortical interactions, as they
are not present in the geniculate input to the layer. The
emphasis of our analysis will be on networks whose
cortico-cortical conductances are dominated by inhibi-
tion, which is the operating regime of the network con-
sidered in McLaughlin et al. (2000) and Wielaard et al.
(2001). As we will show, the coarse-grained Eq. (30)
unveils the mechanisms that underlie these distinct spa-
tial distributions.

We model the cortical layer as a single-orientation
hypercolumn that fills the plane, with its pinwheel cen-
ter at the origin. This is reasonable for the case at hand
as the length-scale of monosynaptic inhibition, LPI , lies
below a hypercolumn width, as Fig. 1 well illustrates.
In this case of a single hypercolumn, let the stimulus
angle θ = 0 coincide with the coordinate angle � = 0.
Then the angular coordinate � and the stimulus an-
gle θ can be interchanged in interpretation by noting
that m P (�, t ; θ ) = m P (2θ, t ; �/2). Accordingly, we

Figure 4. A representative flgn(�, t), shown over one temporal
period λ, and where the orientation hypercolumn of maximal stimu-
lation is set at � = 0.

set θ = 0 and drop its explicit dependence. Figure 4
shows a representative glgn(�, t) (reflecting Eq. (6))
over one temporal period, where the orientation of
maximal stimulation is set at � = 0 and minimal at
� = ±π .

Consider as the simplest model the thresholded-
linear CG equations (22):

〈m P〉t (x) = 〈{ID,P (x, t) − gT,P (x, t)}+〉t

= 〈{ f (�(x), t) + CPE · KPE ∗ 〈m E 〉t (x)

− CPI · KPI ∗ 〈m I 〉t (x)}+〉t , (33)

for P = E, I . Here it is worth recalling Eq. (7),
which implies that 〈 f 〉t = f̄ is independent of �. This
implies that in the absence of nonlinearity—above, the
thresholding {·}+—this model network could evince
no orientation selectivity.

The Special Case of Feed-Forward Inhibition
As a very constructive example, we specialize to the
case of feed-forward inhibition by setting the interac-
tion constants CEE = CIE = CII = 0. In this case, the in-
hibitory firing rate 〈m I 〉t is expressed directly in terms
of the LGN drive:

〈m I 〉t = 〈 f +〉t (�), (34)

and is only a function of �. For f as in Fig. 4, with
f + �= f , 〈m I 〉t (�) will be maximal at � = 0 and de-
crease monotonically and symmetrically to its minima
at � = ±π . This case yields for the excitatory firing
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rate:

〈m E 〉t (x) =
〈{

f (�(x), t) − CE I

×
∫

KE I (x − x′)〈 f +〉t (�(x′)) d2x′
}+ 〉

t

.

(35)

The geometry of firing rates and orientation selec-
tivity follows from this expression. First, for f of the
form shown in Fig. 4, the cortico-cortical inhibition,
CE I KE I ∗ 〈 f +〉t , decreases monotonically from right
to left along the line y = 0. It then follows that 〈m E 〉t

increases along the ray � = 0 as the pinwheel cen-
ter is approached. Crossing the center onto the ray
� = π , the firing rate jumps down discontinuously
(while KE I ∗ 〈 f +〉t is continuous at the pinwheel cen-
ter, 〈 f +〉t is not) and thence increases moving out along
� = π . This feature is roughly observed in the point-
neuron simulations shown in Fig. 2, as well as in the
full CG solutions, found numerically and discussed in
the next section.

Now, consider excitatory CG-cells, both near and the
far from the pinwheel center. In these two cases, the
support of the spatial convolution in Eq. (35) relative
to the spatial variation of preferred orientation leads to
the following observations:

• Far from the pinwheel center Consider |x| � L E I .
Equation (23) then yields

∫
KE I (x − x′)〈 f +〉t (�(x′)) d2x′ � 〈 f +〉t (�(x)).

(36)

Thus, the cortico-cortical inhibition in the far-field
reflects directly the LGN drive and is both selective
and determined locally in �.

• Near the pinwheel center For |x| � LEI ,∫
KEI(x − x′)〈 f +〉t (�(x′)) d2x′

�
∫

KE I (x′)〈 f +〉t (�(x′)) d2x′

= 1

2π

∫ 2π

0
〈 f +〉t (�) d� ≡ 〈 f +〉t,�. (37)

This last identity uses the axisymmetry of the kernel
KE I (x) about x = 0, which KEI has unit integral and

which f depends spatially only on �. Thus, the near-
field cortico-cortical inhibition is determined nonlo-
cally and is nonselective in �.

These two expressions show clearly that far-neurons
should be inhibited very differently from near-neurons:
far-neurons receive inhibition from cells representing
only a small range of orientation preferences, while
near-neurons receive inhibition from neurons repre-
senting all orientation preferences. This difference of
local versus global inhibition arises because only those
inhibitory neurons that are spatially close to an excita-
tory neuron can inhibit it monosynaptically. This dis-
tance of influence is set by the axonal arbor of the in-
hibitory neuron and the dendritic arbor of the excitatory
neuron. Far from the pinwheel center, only neurons of
very similar orientation preferences lie within this cir-
cle of influence, whereas near the pinwheel center all
angles of orientation preference lie within it (see Fig. 1).
Such differences in the selectivity of cortico-cortical
inhibition near and far from a pinwheel center are ob-
served in our large-scale point neuron simulations (see
McLaughlin et al., 2000, Fig. 6) and are studied further
in the next section.

Inserting the above expressions into Eq. (35) pro-
duces the following expression for the firing rates of
these two CG-cells:

〈m E 〉t (�; far) � 〈{ f (�, t) − CE I 〈 f +〉t (�)}+〉t

(38)

〈m E 〉t (�; near ) � 〈{ f (�, t) − CE I 〈 f +〉t,�}+〉t .

(39)

From these formulas the mechanisms that cause the
distinct spatial patterns of firing rate and orientation
selectivity become apparent. Consider near and far
CG-cells, both with preferred orientation θpref = 0 (or
�pref = 0) and with θorth denoting orthogonal to pre-
ferred (or �orth = ±π ). We begin with the inequality

〈 f +〉t (�orth) ≤ 〈 f +〉t,� ≤ 〈 f +〉t (�pref ). (40)

Note that the latter half of this inequality implies that
inhibition at preferred orientation is larger for far CG-
cells than for near CG-cells. This is consistent with
the I&F simulations (McLaughlin et al., 2000, Fig. 6;
Wielaard et al., 2001, Fig. 6) and with results of the
next section. From Eqs. (38) and (39) it now follows
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that

〈m E 〉t (�pref ; near) ≥ 〈m E 〉t (�pref ; far) (41)

and that

〈m E 〉t (�orth; near) ≤ 〈m E 〉t (�orth; far). (42)

Using the monotonicity of KE I ∗ 〈 f +〉t , among other
things, shows the further ordering

〈m E 〉t (�orth; near) ≤ 〈m E 〉t (�orth; far)

≤ 〈m E 〉t (�pref ; far) ≤ 〈m E 〉t (�pref ; near), (43)

with 〈m E 〉t (�pref ; near) being the system’s highest
firing rate and 〈m E 〉t (�orth; near) the lowest. This or-
dering of the firing rates is apparent in the I&F simula-
tions shown in Fig. 2 and in our full CG solutions (next
section).

Inequalities (41) and (42) together suggest that the
form of inhibition near the pinwheel center leads to
increased modulation, relative to the far-field, in the
orientation tuning curve. It is this trait that underlies
the sharper selectivity found there. Further, the form
of the inhibitory contribution to Eq. (35) implies that
these differences in near and far-field selectivity should
occur over a distance LEI from the pinwheel center, as
is observed in the full I&F point-neuron simulations
and in our full CG solutions (next section).

Thus, in this case of feed-forward inhibition, coarse-
grained analysis shows precisely that neurons near pin-
wheel centers are more selective for orientation than
those far and that this property arises from the global
inhibition in � near the pinwheel centers—in contrast
to the local inhibition in � experienced by far neurons.

Finally, it is interesting that in this simple model, if
f + = f so that 〈m I 〉t = f̄ is independent of �, then
inhibition is everywhere the same, and there are no
near/far differences in either firing rates or selectivity.
This is a consequence of the phase averages becoming
time averages for these drifting grating solutions and
that inhibition is mimicking its unrectified LGN drive.

A More General Case with Cortico-cortical
Inhibition Using the far- and near-field models, this
comparison of near/far responses can be generalized
to cases where the dominant inhibitory couplings are
retained. That is, we compare the far-field model

〈m P〉t (�) = 〈{ f (�, t) − CP I 〈m I 〉t (�)}+〉t , (44)

with the near-field model

〈m P〉t (�) = 〈{ f (�, t) − CPI〈m I 〉t,�}+〉t , (45)

for P = E, I . Note that relative to the choice of
synaptic weights in the full point-neuron simula-
tions of McLaughlin et al. (2000), only the subdom-
inant cortico-cortical excitatory couplings have been
dropped (CEE = CIE = 0). With this choice of parame-
ters, the P = I equation for m I is independent of m E

and is solved separately, while m E is determined ex-
plicitly once m I is given. We will examine only the
nature of solutions to the implicit equations for m I ,
noting that if CEI = CII then m E = m I .

For notational ease, we define b(�) ≡ 〈m I 〉t (�) in
Eq. (44), a(�) ≡ 〈m I 〉t (�) in Eq. (45), and C = CI I .
Then, defining

z(x ; �) = 〈{ f (�, t) − C · x}+〉t , (46)

these inhibitory firing rates satisfy

b(�) = z(b(�); �), far (47)

a(�) = z(〈a〉�; �), near. (48)

The function z(x ; �) is strictly decreasing for x ≤ maxt

f +(�, t)/C and is zero thereafter. The relations (47)
and (48) have their own interesting properties:

• 〈a〉� is determined by the scalar fixed-point equation

〈a〉� = 〈(〈a〉�; �)〉� ≡ y(〈a〉�). (49)

This relation always has a unique, nonnegative so-
lution. If f + ≡ 0, then 〈a〉� = 0. If f + is not ev-
erywhere zero, then there exists x̄ > 0 (x̄ = max�,t

f +/C) such that y(x) is positive and monoton-
ically decreasing on the interval [0, x̄) and with
y(x) = 0 for x ≥ x̄ . This implies that there is
then a unique 〈a〉� > 0. These arguments use that
{a − b}+ = {a+ − b}+ for b ≥ 0.

• The relation b(�) = z(b(�); �) is also a fixed-point
relation, now to be solved for each �. The same
argument as above gives the existence of a unique,
nonnegative solution. In further analogy to 〈a〉�, it
also implies that for a fixed �, if f + is not ev-
erywhere zero in t , then b(�) > 0 (this feature is
shared with Eq. (34)). This gives a telling differ-
ence between a(�) and b(�). The same function f
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can yield both positive 〈a〉� and (everywhere) posi-
tive b(�), but because a(�) is explicitly determined
once 〈a〉� is specified, a(�) will itself have zero
sets from rectification. This feature of thresholded
firing rates near the pinwheel center (i.e., in a(�))
but no thresholding far (i.e., in b(�)) is observed
in both our CG solutions and point-neuron network
simulations.

Now we use a graphical argument to show that
these near/far CG solutions share the same near/far in-
equalities (41), (42), and (43), with the simpler “feed-
forward inhibition” model. Again, consider Fig. 4,
which shows f (�, t) with the orientation of maximal
stimulation at �pref = 0. Let x̃ = min�,t f (�, t)/C =
f (�̃, t̃)/C (which might be negative). Then for x ≤ x̃ ,
f (�, t) − C · x ≥ 0 for all � and t , and hence

y(x) = z(x ; �) = w(x) ≡ f̄ − C · x,

using that 〈 f 〉t = f̄ is independent of �. Figure 5 shows
y(x) and z(x ; θ ) for several values of � (here x̃ = 0)
and in particular for �pref = 0 and �orth = π . Con-
sider first y(x) and z(x ; �pref ). Both break equality with
w(x) for x > x̃ since f (�, t) and f (�pref , t) have the
same global minimum (at (�̃ = �pref , t̃)). Let x be
slightly above x̃ . Then, since f (�pref , t) < f (�, t)

Figure 5. Solving the fixed-point Eqs. (47) and (49). The lower and
upper bounding curves are z(x ; π ) and z(x ; 0), respectively, and the
lighter curves are z(x ; �) at intermediate values of �. The dark thick
curve sandwiched between the bounding curves is y(x). The dashed
diagonal line is the curve y = x .

somewhere in a neighborhood of (�̃, t̃), it is easy to see
that y(x) < z(x ; �pref ). This separation is maintained
to x = x̄ , where y(x) = z(x ; �pref ) = 0, as f (�, t) and
f (�pref , t) share the global maximum. Since thresh-
olding slows the rate of decrease of y(x), we also have
that y(x) > w(x). Now consider z(x ; �orth). Since
f (�orth, t) has no t dependence (in our construction),
we have directly z(x ; �orth) = w(x)+. Examination of
Fig. 5 then implies directly that bmin = b(�orth) ≤
〈a〉� ≤ b(�pref ) = bmax. Now using that the function
z is nondecreasing in its first argument gives

a(�pref ) ≤ b(�pref ), and a(�orth) ≤ b(�orth),

(50)

or as for the feed-forward inhibition model,

〈m E 〉t (�orth; near) ≤ 〈m E 〉t (�orth; far)

≤ 〈m E 〉t (�pref ; far) ≤ 〈m E 〉t (�pref ; near).

Again, these relations underly the increased modula-
tion (in θ ) of the firing rate, which manifests itself as
lowered CVs near pinwheel centers.

We expect that much of the analysis presented in this
section, using the thresholded-linear CG equations, sur-
vives when using more nonlinear CG systems such as
Eqs. (16) and (17). This is because one central ana-
lytic property used here was the monotonicities of N
with respect to changes in excitatory and inhibitory
conductance.

3.2.2. Numerical Solutions of the Full CG Equations.
We now turn to the study of the full CG system for
drifting grating response, expressed in Eqs. (29) and
(30). Solutions to Eq. (30) are found here by relax-
ation in time using Eq. (21) and seeking steady solu-
tions 〈m P〉φ . Here we use the simple choice of tempo-
ral kernel G P (t) = exp(−t/τP )/τP (for t > 0). For this
kernel, setting MP = G P ∗ 〈m P〉φ gives that 〈m P〉φ =
MP − τP∂ MP/∂t , and so Eq. (21) is transformed into
a standard initial-value problem:

τP
∂ MP

∂t
(x, t)

= −MP (x, t) − 〈N (glgn, SPP′ KPP′ ∗ MP ′ )〉φ,

P = E, I. (51)

This system is evolved forward using a second-order
Adams-Bashforth integration method. While we are
looking for steady solutions, in which case MP =
〈m P〉t , seeking such solutions by temporal relaxation
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can give information on the stability (or its lack) of such
solutions, at least with respect to the specific choice
of kernel G P . (For example, this choice of G P ne-
glects differences in time-to-peak for excitatory ver-
sus inhibitory synaptic conductance changes.) More
direct approaches to finding solutions using a Newton-
Raphson method would converge in only a few iter-
ations but would also require the inversion of large
matrices, among other complications. Still, while the
method used here is far from the most efficient, it is
much more cost effective than use of a point-neuron
simulation. As a point of comparison, producing a CV
distribution using relaxation of the CG equations re-
quired two to three hours of CPU time on a single pro-
cessor SGI (R10000 chip), versus two to three days on
the same machine for the point neuron code.

For an 8 Hz drifting grating stimulus, Fig. 6 shows
the distribution of time-averaged firing rates 〈m E,I 〉t

across the model cortical layer, found as solutions of

Figure 6. From the full CG network: The distribution across the model cortex of time-averaged firing-rates (A, excitatory; C, inhibitory) and
of circular variance (B, excitatory; D, inhibitory) (see Fig. 2). Here, only one of the four orientation hypercolumns in the model is shown.

the full CG model, together with the distribution of
CV [〈m E,I 〉t ], their circular variances. For this simula-
tion, we have used the same synaptic weights SPP′ as
in McLaughlin et al. (2000) and Wielaard et al. (2001),
setting τE = 0.003 and τI = 0.006 (3 and 6 msec), and
used 32×32 excitatory and 16×16 inhibitory CG-cells
in each orientation hypercolumn. The spatial convolu-
tions underlying the cortical interactions were evalu-
ated using the fast fourier transform and the discrete
convolution theorem. For computational efficiency, we
use uniform densities for the noisy conductance densi-
ties FE and FI (g0

E = 6 ± 6 s−1, g0
I = 85 ± 35 s−1)

to provide a rough approximation of the noisy conduc-
tances used in McLaughlin et al. (2000). For uniform
distributions the two-dimensional distributional inte-
grals in Eq. (29) can be reduced to integrals in only one
variable through an exact integration.

The results shown in Fig. 6 should be compared
with those shown in Fig. 2 from the I&F point-neuron
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Figure 7. Left: Solid curves are orientation tuning curves for an excitatory neuron near the pinwheel center, for various contrasts (ε = 1.0, 0.75,
0.50, 0.25) from the full CG network (solid). The dashed curves are tuning curves gotten found from Eq. (25), the near-field model. Right: Solid
curves are tuning curves for an excitatory neuron far from the pinwheel center. Dashed curves are those gotten from the far-field approximation,
Eq. (24). (see McLaughlin et al., 2000, Fig. 6).

simulations in McLaughlin et al. (2000), with which it
shows good agreement in predicting higher firing rates
near the pinwheel centers, as well as sharper orientation
selectivity there. These differences in our model’s near
and far responses are illustrated further through Fig. 7,
which shows the orientation tuning curves (at several
contrasts) for two excitatory CG-cells, one near and
one far from the pinwheel center. The sharper selectiv-
ity seen near the pinwheel center is consistent with the
simulations in McLaughlin et al. (2000) and in accord
with our mathematical analysis of the previous section.
Note too the global positivity of the firing-rate curve of
the far neuron, as is also predicted by this analysis.

Superimposed on the tuning curves of the near CG-
cell in Fig. 6 are solutions to the near-field model given
by Eq. (25). The near-field solution shows good fidelity
to the near CG-cell response, showing comparable (and
slightly sharper) selectivity and amplitude of firing. Su-
perimposed on the tuning curves of the far CG-cell are
those found from the far-field reduction expressed in
Eq. (24). As both the far-field and near-field CG equa-
tions are considerably simpler than the full CG system,
a solution 〈m E,I 〉t (θ ; far) is found directly by Newton’s
method, using a continuation strategy. The agreement
is quite good between the full- and far-field CG mod-
els, even though the modeled orientation hypercolumn
is of finite width. These two figures reinforce the no-
tion that important and distinct regions of the full CG
model’s spatial response—near and far from orienta-
tion singularities—can be understood through much
reduced theoretical models.

Having found 〈m E,I 〉t (x), it is now straightforward
to reconstruct time-dependent information—for exam-
ple, firing rates from Eq. (29). Such data is shown in
Figs. 8 and 9 for the near and far CG-cells, respectively,
over one period of drifting grating stimuli set at each
cell’s preferred orientation (see Wielaard et al., 2001,
Fig. 7). The first panel of both figures shows 〈m E 〉t (t),
and their half-wave rectified wave-forms are those typ-
ically associated with simple cell responses to a drift-
ing grating stimulus. The last three panels show the
total conductance gT and its two constituents, the exci-
tatory and inhibitory conductances gE and gI . Recall
that cortico-cortical contributions are time-invariant in
our theory. Hence the fluctuations in gT and gE arise
solely from the (tuned) fluctuations in glgn.

What is immediately clear is that under stimulation
the total conductance is large and is dominated by its
inhibitory part. As discussed in Shelley et al. (2001),
this observation is consistent with recent experimental
findings in cat primary visual cortex showing that under
stimulation, conductances can rise to two to three times
above their background values and are predominantly
inhibitory and hence cortical in origin (Borg-Graham
et al., 1998; Hirsch et al., 1998; Anderson et al., 2000).
This observation is also consistent with an a priori as-
sumption underlying our CG reduction: the time-scale
associated with conductance (here ∼2 msec) is the
smallest time-scale. Further, given the relative place-
ments of the excitatory and inhibitory reversal poten-
tials (here 14/3 and −2/3, respectively) to threshold
(at 1), gI necessarily exceeds gE (here dominated by
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Figure 8. From the full CG network. A: The time-dependent firing-rate m E (t) over a stimulus cycle for the near CG-cell in Fig. 7 for drifting
grating stimulus at full contrast (ε = 1), and at preferred orientation. B: The expectation of the effective reversal potential VS (t). The dashed line
is at the threshold to firing. C, D, E: The expectations of gT , gE , and gI , respectively (see Wielaard et al., 2001, Fig. 7).

glgn) so that inhibitory and excitatory membrane cur-
rents can be in balance and produce the good selectivity
found in simple cells.

A second observation is that gI is larger for the far
CG-cell than for the near. This is explained and pre-
dicted through the analysis of the last section (see, for
example, inequality (40) in combination with Eqs. (38)
and (39)). It is this larger inhibition away from the pin-
wheel center that underlies the reduced firing rates, as
is seen most directly through the dynamics of the po-
tential VS = ID/gT (the second panel in each figure),
which in an overdamped neuron (described by Eq. (1))
approximates the cell’s subthreshold potential v. For
gT dominated by gI , and gE by glgn, we have

VS = VE gE (t) − |VI |gI

gR + gE + gI
≈ −|VI | + VE

glgn(t)

gI
. (52)

Thus, for each of these CG-cells, the potential fol-
lows closely the time-course of its LGN drive, but with

the amplitude of its modulation—particularly above
threshold—controlled divisively by the inhibitory con-
ductance. This yields simple cell responses in either
case, with smaller firing rates away from the pinwheel
center.

In Fig. 10 we investigate near/far differences under-
lying orientation selectivity. For a near CG-cell, panels
A and B show the time-averaged threshold current

〈ID − gT 〉t (θ ) = −gR + (VE − 1)〈gE 〉t (θ )

+ (VI − 1)〈gI 〉t (θ ) (53)

and its inhibitory component (VI − 1)〈gI 〉t (θ ), respec-
tively. Positivity of the threshold current is a neces-
sary condition for cell firing. We see for this near CG-
cell that both the threshold and inhibitory currents are
quite unselective for orientation. As was analyzed in
the previous section, it is this lack of orientation selec-
tivity in near inhibition that gives sharper selectivity
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Figure 9. The same quantities as in Fig. 8 but for the far CG-cell in Fig. 7.

in cell response. That there is likewise little selectiv-
ity in the averaged threshold current follows from the
fact both cortico-cortical conductances are unselective
and that 〈glgn〉t (θ ) is independent of θ . The dashed
curves are at ±√

2 standard deviations, which in the
absence of any contribution from the imposed noisy
conductances would give exactly the envelope of tem-
poral modulations of glgn in the threshold current. The
size of the noisy contribution to the standard devia-
tion is suggested by the inhibitory current, which con-
tains no LGN contribution. We see in panel A that the
mean threshold current is negative and that it is the
predominantly LGN fluctuations that bring it above
threshold.

For the far CG-cell, we see that the inhibitory current
(panel C of Fig. 10) is now selective for orientation and,
being the dominant, selective contribution, infers an
orientation selectivity onto the mean threshold current.
The noisy conductances now play an important role in
bringing the threshold current above threshold (the up-
per dashed curve of panel C), and its weak modulation

underlies both the lower firing rates away from pin-
wheel centers and the lower selectivity.

These results are again in accord with the analysis
of the previous section and with the analysis of the
large-scale point-neuron simulations (see McLaughlin
et al., 2000, Fig. 6). We now turn to considering the
dependence of the CG-system on other parameters.

Contrast Dependence Contrast invariance in ori-
entation selectivity is frequently cited as a com-
mon, though perhaps not universal, response property
of primary visual cortex (Sclar and Freeman, 1982;
Ben-Yishai et al., 1995; Somers et al., 1995; Troyer
et al., 1998; Sompolinsky and Shapley, 1997; Anderson
et al., 2000). One statement of contrast invariance is
that there exists a function R(θ ) such that 〈m〉t (θ, ε) =
A(ε)R(θ )—that is, changes in stimulus contrast ε sim-
ply rescale the amplitude of an underlying fundamen-
tal tuning curve R(θ ) and so do not change the “tuning
width.” We note that there are not as yet physiological
data addressing laminar differences in this selectivity
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Figure 10. From the full CG network, the time-averaged threshold and inhibitory currents for a near CG-cell (panels A and B) and for a far
CG-cell (panels C and D), as a function of θ . The dashed curves are at ±√

2 standard deviations (see McLaughlin et al., 2000, Fig. 6).

property and in particular whether contrast invariance
is a common feature of 4Cα of macaque V1.

Examination of the near and far tuning curves in
Fig. 7 suggests that, in the model, contrast invariance
is a feature of selectivity near the pinwheel center but
much less so away away from the center. In the context
of circular variance, contrast invariance would imply
that CV [〈m〉t ] = CV [R] or that CV is independent
of ε. Figure 11 shows CV [〈m E 〉t ] from the full CG
system, for four contrasts, ε = 0.25, 0.50, 0.75, and
1.0, measured along a horizontal line cutting across
an orientation hypercolumn and through its pinwheel
center. Again, Fig. 11 shows that the model produces
a region of contrast invariant tuning localized near the
orientation center.

What is the basis for this observed contrast invari-
ance and its near/far differences? Though it is only a

partial explanation, it is easy to see that within any of
the CG models, contrast invariance emerges at suffi-
ciently high contrast. Consider a “large” LGN forcing
glgn(x, t) = δ−1q(x, t), with 0 < δ � 1, within the
fully nonlinear CG model (30), and seek likewise large
solutions 〈m P〉t = δ−1 RP . At leading order in δ−1,
the leakage and stochastic conductances drop out, and
the RP satisfy the equations

RP (x) = 〈N (q(x, t), SPP′ KPP′ ∗ RP ′ (x))〉t , (54)

where N is defined as in Eq. (17),

N = −gT

log [1 − gT /ID]
for ID > gT and 0 otherwise,

(55)
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Figure 11. From the full CG network, a cross-section of the
CV distribution, cutting across a hypercolumn, for contrasts ε =
0.25, 0.5, 0.75, and 1.0.

but with

gT,P(x, t) ≡ q(x, t) +
∑

P ′
SPP′ KPP′ ∗ RP ′ (x)

ID,P (x, t) ≡ VE q(x, t) +
∑

P ′
VP ′ SPP′ KPP′ ∗ RP ′ (x).

(56)

Such large solutions will be contrast invariant. In
the case of uniform cortico-cortical inhibition with
only LGN excitation, Ben-Yishai et al. (1995) inves-
tigated such large-contrast solutions in their study of a
thresholded-linear mean-field model.

Figure 12. Left: A comparison of near-field tuning curves at for contrasts ε = 0.25, 0.5, 0.75, 1.0 with the large contrast tuning curve NE

for the near-field model (heavy solid curve). Right: The same as in the left figure but for the far-field model. In this case, the dashed curves are
for ε = 0.25 (lowest) and 0.5. The two solid curves are for ε = 0.75 and 1.0.

We have numerically constructed solutions RP to
these equations for the near- and far-field models, and
Fig. 12 shows their comparison with the finite con-
trast far- and near-field solutions shown in Fig. 6. Here
we have rescaled all tuning curves to have unit max-
imum. First, the near-field tuning curves are rather
well-described by RE (θ ; near). Indeed, a close exam-
ination reveals that this range of contrasts is part of a
monotonic approach to RE with increasing contrast but
with substantial nonlinear difference components still
present. The far-field behavior is much different. For
the contrasts shown, the far-field solutions are far from
a range of uniform behavior with respect to RI (θ ; far),
except perhaps in a neighborhood of the preferred
orientation.

Contrast invariance is a global property of the firing-
rate curve, and to see contrast invariance through this
large-contrast avenue, large O(δ−1) amplitudes must
be realized everywhere in θ (unless the deficient region
is thresholded and so is “out-of-sight”). The approach
to contrast-invariant behavior is aided by the ability of
the solution to sample the large temporal fluctuations
of the LGN drive. For the far-field model, this is possi-
ble near the preferred orientation θpref but not at θorth,
where there are no such fluctuations. For the near-field
model, the solution is determined globally in θ—for ex-
ample, by the determination of 〈a〉� through Eq. (49) in
the previous analysis of the thresholded-linear version.
Thus, for the near-field model, the temporal fluctua-
tions are felt globally in θ , yielding a faster approach
to large-contrast behavior.
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Figure 13. For the near-field model, CV [〈m E 〉t ] as a function of
contrast ε, as the amplitude of fluctuation of the stochastic conduc-
tances about their means is successively halved, leading to succes-
sively lower CV curves.

Figure 14. From the full CG network, the spatial distribution of time-averaged excitatory firing-rates for four different inhibitory coupling
lengths. A: L I ≈ 70 µm, B: 100 µm (the standard value), C: 200 µm, and D: 400 µm.

This argument only explains response at large con-
trast. We find that the propagation of contrast invariant
response to lower contrast is greatly aided by the
presence of the stochastic conductance contributions.
Figure 13 shows CV [〈m E 〉t ] for the near-field model
as the range of the noisy fluctuations is successively
halved. At higher contrast, near ε = 1, these fluctu-
ations play a minor role in determining the CV. For
small fluctuations, as the contrast is reduced the CV
decreases monotonically toward zero due to the “ice-
berg effect” (that is, the lowering of firing-rate curve
through a fixed threshold), yielding smaller responses
over a narrowing range (see Sompolinsky and Shapley,
1997). On the other hand, in the presence of stronger
noisy fluctuations, the firing-rate still decreases as
the contrast is lowered, but the noisiness keeps the
network activity above threshold over a broader range,
yielding more contrast-invariant responses. This result



120 Shelley and McLaughlin

is consistent with recent observations of Anderson
et al. (2000) on the effects of noise in orientation
tuning in cat visual cortex.

Length-Scale Dependencies One important ques-
tion is what determines the scale of the region of
sharper selectivity in our model. Given the strong in-
hibition, a reasonable guess is the axonal length-scale
of inhibition, which we estimate from the anatomy to
have a radius of r I

A = 100 µm, which with a dend-
ritic tree radius of r I,E

D = 50 µm sets the two length-
scales L I = LIE = LII ≈ 100 µm.

Figure 14 shows the associated distributions of
firing-rates 〈m E 〉t for four different values of r I

A (50,
100, 200, 400 µm, giving approximately 70, 100, 200,
400µm for L I ). As was suggested by our analysis of the
previous section, as L I is increased, the region of higher
firing-rates increase further outward from the orienta-
tion singularity with increasing L I . Indeed, 〈m E 〉t near
the pinwheel center changes very little with increasing
L I .

Figure 15 shows the spatial distribution of
CV [〈m E 〉t ], for these four coupling lengths, along
a horizontal line cutting through pinwheel center.
Clearly, the region of sharpest selectivity increases with
L I , and indeed at the largest diameter that more than
spans the hypercolumn, the degree of selectivity has
become uniform. The width of the sharp selectivity re-
gion scales very well with 2L I , the radius of inhibitory
input to the excitatory population, up to the point where
it exceeds the hypercolumn width.

Figure 15. A cross-section of the CV distribution, cutting across a
hypercolumn, for the four inhibitory coupling lengths in Fig. 14.

4. Discussion

In this work we described a reduction of our large-
scale I&F neuronal network model to a simpler, spa-
tially coarse-grained system for firing-rates of neuronal
subpopulations. A crucial element in the mathemat-
ical structure of the CG model is the appearance of
phase-averaged firing-rates in the cortico-cortical con-
ductances (see Eq. (13)). This phase averaging arises
from the assumption that the preferred spatial phase of
neurons presynaptic to a given cell was randomly dis-
tributed from a broad distribution. A consequence of
this interpretation of cortical architecture—i.e., cou-
pling is nonspecific in phase—is the prediction that for
drifting grating stimuli, cycle-averaged cortico-cortical
conductances should be time invariant, as has been
approximately observed in our large-scale I&F sim-
ulations (Wielaard et al., 2001). The phase averaging
of inhibition-dominated, cortico-cortical conductances
was also a crucial element to our I&F network model,
producing simple cell responses to contrast reversal
stimuli (Wielaard et al., 2001). We note that phase-
averaging is inherent in a recurrent network model of
complex cells due to Chance et al. (1999), which also
presumes simple cell inputs, as might be generated by
a model such as ours.

In this aspect, our model is very different from
“push-pull” models (Palmer and Davis, 1981; Tolhurst
and Dean, 1990) that posit a direct or indirect phase-
sensitive inhibition from the LGN. Direct inhibition
from LGN to cortical neurons is ruled out by anatomy;
LGN-to-cortex inhibitory synapses do not exist. One
might attempt to preserve the “push-pull” concept by
postulating that disynaptic inhibition from inhibitory
neurons in the cortex could provide phase-sensitive in-
hibition, as has been instantiated in the model of Troyer
et al. (1998), where cortical couplings are explicitly
phase-specific.

There is recent experimental evidence bearing on
these different conceptions of cortical architecture.
From measurements of simple cell responses to drift-
ing gratings, Anderson et al. (2000) infer that the tem-
poral modulation of synaptic inhibition in opposition
to the modulation of synaptic excitation is indicative
of push-pull interactions between inhibition and exci-
tation. However, scrutiny of their measurements indi-
cates also that there usually is a large, phase-insensitive
component of the inhibitory conductance, consistent
with the phase-insensitive inhibition that is observed in
our model’s response to drifting gratings (see Wielaard
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et al., 2001, Figs. 7, 9). Further, other direct intracel-
lular measurements by Borg-Graham and colleagues
(Borg-Graham et al., 1998) indicate that inhibition in
simple cells is more often spatial phase-insensitive than
phase-sensitive (or “push-pull”)—as Borg-Graham et
al. indeed noted. Our model produces unmodulated cor-
tical inhibition in response to drifting gratings because
neurons are excited by inhibitory neighbors of differ-
ent spatial phase preference. Perhaps the real cortex has
inhibitory conductances that are neither wholly phase-
insensitive as in our model nor wholly phase-sensitive
as envisioned in push-pull models but have a phase sen-
sitivity somewhere between all or none. In any case, one
point of mathematical and simulational analysis is that
the differences that arise from these distinct models of
cortical architecture are sharply delineated.

For drifting grating stimuli we also used the CG re-
duction to understand, through mathematical analysis
and simulation, the mechanisms underlying the firing-
rate and orientation-selectivity patterns observed in our
I&F network (McLaughlin et al., 2000). This analysis
showed that it is an interaction between the pinwheel
structure of the preferred orientation mapping and the
isotropic architecture that produces greater orientation
selectivity near pinwheel centers. That cortico-cortical
inhibition is strong and that its coupling length-scale
is below the hypercolumn size are key to this analysis.
We found other near/far differences in the properties
of orientation selectivity, in particular the degree of
invariance to changes in contrast. We found contrast
invariance was most readily achieved in the pinwheel
center and showed also the salutary effect of noise in
maintaining it. This latter point is consistent with a
recent study by Anderson et al. (2000).

Using tetrode measurements combined with optical
imaging, Maldonado et al. (1997) have sought to de-
termine experimentally whether orientation selectivity
differs near and far from pinwheel centers (see also
Das and Gilbert, 1999). They used the half-width of a
Gaussian fit as an estimate for a tuning width and re-
ported no substantial differences in tuning near and far
from pinwheel centers. However, their study was in cat
striate cortex, and the laminar location of the recorded
cells was unknown. Our network is built on the archi-
tecture of input layer 4Cα of Macaque; if truly present,
such near/far differences may not be survive in other
layers due to spread of axonal projections from 4Cα.
Ours is also a network of simple cells. Complex cells
make up a large fraction of selective cells in visual
cortex (Ringach et al., 2001) and may have different

tuning properties from simple cells relative to pinwheel
centers.

We also demonstrated the ability of the coarse-
grained system to capture the salient features of our
I&F point-neuron simulations but at a far lower com-
putational cost. This is an important consideration as
we seek to understand neuronal network dynamics at
greater spatial, temporal, and functional scales. We are
currently investigating how coarse-grained models can
replace, or be integrated, with finer-scale dynamical
representations such as point-neurons.
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