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Spatiotemporal chaos in spatially extended systems
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Abstract

To address finite-size effects in the use of the decay mutual information to characterize spatiotemporal chaotic
dynamics, we modify the dispersion of the nonlinear Schrödinger equation to obtain a model system for which the
number of unstable modes remainsfixedwhile the domain size increases. Our numerical study of the model system
clearly establishes that spatiotemporal chaos arises in the presence of only two unstable modes. In this spatially
extended system, the spatiotemporal chaos is characterized by chaotic dynamics in time and by an exponential decay
in space of mutual information, with the decay rate becoming system-size independent in the large system-size limit.
© 2001 IMACS. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

The concept of deterministic chaos in finite dimensional systems has been extended to spatially ex-
tended systems described by partial differential equations (PDE), which are infinite dimensional dy-
namical systems with spatial structures. The existence oftemporal chaosin nearly integrable systems,
such as perturbed nonlinear Schrödinger (NLS) equations, is well established and is linked to linear
instabilities in integrable soliton dynamics [1]. In these systems, temporal chaos arises from underlying
hyperbolic structures which can result in homoclinic orbits for the integrable PDEs. These are the sources
of sensitivity and can, when perturbed, generate chaotic responses. Temporal chaos in perturbed NLS
constitutes spatially regular, coherent localized waves which evolve chaotically in time. For example,
under even, periodic boundary conditions, in small spatial domains with only one instability and only
one solitary wave, a “soliton” jumps chaotically between the center and edge locations of a periodic
system. The regular spatial profile can be described by a strong statistical correlation between the time
series at locationx, of the temporally chaotic waveψ(x, t), and the time series of waveψ(y, t) at y,
y 6= x.
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As demonstrated in [2–5], the hyperbolic structure in NLS gives rise not only to temporal chaos, but
also tospatiotemporalchaos. Intuitively, spatiotemporal chaos arises from the following scenario: by
enlarging the domain size and relaxing even symmetry, one introduces increasing number of instabilities
into the system, hence increasing number of distinct classes of spatial excitations in the form of solitary
waves, standing waves, waves traveling to the left and right, bound states, etc. Therefore, introduction
of more instabilities creates more and more spatially complex structures in the system. Statistically,
in addition to the loss of information in time as characterized by temporal chaos, one would expect this
“spatial complexity” to decorrelate the system, with the time series of waves,ψ(x, t) andψ(y, t), becoming
independent as the distance fromx to y increases, signifying loss of information over space.

There have been many definitions of spatiotemporal chaos, emphasizing various chaotic aspects of
dispersive waves in space [6]. We have used a “working definition” which includes two points: (i) a
temporally chaotic waveψ(x, t); (ii) for which the time series{ψ(x, t), ∀t} and{ψ(y, t), ∀t} become
statistically independent as the distance fromx to y increases. Furthermore, we have used vanishing
mutual informationI(x, y) to quantify this statistical independence, which is a stronger measure of
statistical independence than the commonly used two-point correlation function, since vanishing mutual
information is a necessary and sufficient condition for statistical independence. For dispersive waves, the
mutual information between two pointx andy can be defined as

I(x, y) =
∫

dudv px,y(u, v) log
px,y(u, v)

px(u)py(v)
, (1)

where the distributionspx,y(u, v), px(u) andpy(v) are generated through time series{ψ(x, t), ∀t}
and{ψ(y, t), ∀t}. Intuitively, px,y(ψ(x), ψ(y))dψ(x)dψ(y) is the fraction of time that bothψ(x, ·) ∈
(ψ(x), ψ(x)+dψ(x))andψ(y, ·) ∈ (ψ(y), ψ(y)+dψ(y)) simultaneously, andpx(ψ)dψ is the fraction
of time thatψ(x, ·) ∈ (ψ,ψ + dψ), etc. In terms of this mutual information, the working definition used
in [2–5] can be summarized as follows:

A waveψ(x, t) is spatiotemporal chaotic if

1. ψ(x, t) is a temporally chaotic orbit (e.g. as characterized by bounded, not asymptotically periodic
orbits with positive Lyapunov exponents);

2. the mutual information between two spatial points,I(x, y), decays exponentially in space as|x−y| →
∞.

Using this definition of spatiotemporal chaos, we have shown that spatiotemporal chaos indeed is
observed in the driven, damped NLS equation

iψt + ψxx + 2|ψ |2ψ = −iαψ + Γ ei(ωt+γ ) (2)

with periodic boundary conditions,ψ(x + L) = ψ(x), whereL is the system length,ω and γ the
driving frequency and phase, respectively. The damping coefficientα and the driving strengthΓ are
small parameters. Furthermore, it was found that the onset of spatiotemporal chaos can be induced by
a very small number of instabilities —two for the system (2). For the NLS system (2), the number of
instabilities is associated with the size of domain. For example, in the studies of spatiotemporal chaos
[2–5], data very close to the trivialx-independent solution of the unperturbed NLS

ψ(x, t) = Aexp[−i(2A2t + σ)], (3)
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was initialized (hereA is the amplitude of the wave andσ the phase). This plane wave (3) is linearly
unstable with the number of instabilities determined by 0< k2 < 4A2, wherek = 2πm/L is the
wavenumber of the linearized wave andm is an integer. One can see that the number of unstable modes
scales linearly with the sizeL of the periodic spatial domain.

In the numerical studies [2–5], the mutual information of a temporally chaotic state with one spatially
regular solitary wave, associated with one instability, is nonvanishing. Whereas, the mutual information
of waves associated with more than one instability decays over space, hence theonsetof spatiotemporal
chaos. In order to use the working definition of spatiotemporal chaos, to make precise the statement that
the spatiotemporal chaos indeed arises for asmallnumber of instabilities, one has to demonstrate that,
for afixedsmall number of instabilities, there is an exponential decay of mutual information in space. To
ascertain the exponential decay as|x − y| → ∞, one needs an infinite spatial domain — or, at least, a
sufficiently large spatial domain that finite-size effects can be eliminated. However, as we discussed above,
increasing the domain size for the perturbed NLS, also simultaneously increases the number of linearly
unstable modes. Therefore, to ensure that only two instabilities are required for spatiotemporal chaos,
one must find a dispersive wave system such that there is an exponential decay of mutual information
for a fixed (small) number of linearly unstable modes while simultaneously the system size is increased.
This is the issue that we will study in this paper.

We note that a similar question has also been investigated for a modified Kuramoto–Sivashinsky
equation [7], in which the usual (k2–k4)-dispersion of the Kuramoto–Sivashinsky equation is replaced
by a nonlocal linear operator with two linearly unstable modes. In contrast to our decaying mutual
information characterization of spatial chaos, spatial complexity is characterized in [7] by the topological
entropy of a symbolic language associated withstationarysolutions in space. There, the question of
how to dynamically visit all these stationary states in time remains to be fully addressed [6,7]. In our
approach, we will follow a similar construction for the linear, dispersive operator. However, we will stress
both temporal and spatial chaotic aspects of dynamics.

To seek a candidate system which possesses the exponential decay of mutual information for a
fixed small number of instabilities with the increasing size of system, the approach we take is to
keep the nonlinearity of the NLS (2), and to modify the dispersion such that plane waves are unsta-
ble to a (small) number of instabilities, which remains constant as the system size increases. As a re-
sult, the modified NLS is an integro-differential equation inx-space and the linear operator becomes
nonlocal. For this modified equation, we numerically study the behavior of the mutual information
and two-point correlation functions. As reported below, when there is only one instability, the dis-
persive wave is statistically well correlated over the whole domain. In contrast, when there are two
instabilities, the dispersive wave exhibits an exponential decay of mutual information in space. The
decay rate becomes independent of system size as the domain size increases. Our numerical study
clearly establishes that the dynamics of system exhibits spatiotemporal chaos for only two unstable
modes. We will also study detailed aspects of the dynamics, such as the relation between spatial decay
lengths determined by the two-point correlation function and those determined by the mutual informa-
tion and its implication for Gaussianity of the joint distribution of waves between two distinct spatial
points.

In Section 2, we will carry out the modification of the dispersion to obtain our model system and discuss
the linear stability of the system. In Section 3, we present the numerical method used for our numerical
study. In Section 4, we report our numerical results and discuss various aspects of the dynamics. We
conclude the paper with Section 5.
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2. The model

The strategy, we employ to construct a system with a fixed number of unstable modes is to replace
the linear operator for the dispersive part of NLS, while leaving the nonlinear part intact. In Fourier
representation, the unperturbed NLS on the real line can be written as

iȧk = k2ak − 2

(2π)2

∫
ak1ak2a

∗
k3
δ(k + k3 − k1 − k2)dk1 dk2 dk3.

We replace the dispersionk2 with the following dispersion

D(k) =
{
k2

1δ(|k| − k1)+ λk2
2δ(|k| − k2), for |k| < kc,

k2, for |k| ≥ kc,

whereδ denotes the Dirac delta function,k1 andk2 the fixed wavenumbers,k1 < k2 < kc, and above
the thresholdkc is the usual dispersionk2. The parameterλ = 0 corresponds to one-mode truncation
andλ = 1 to two-mode truncation (see below). This modification of dispersion yields a new equation of
motion:

iȧk = D(k)ak − 2

(2π)2

∫
ak1ak2a

∗
k3
δ(k + k3 − k1 − k2)dk1 dk2 dk3, (4)

which is an integro-differential equation inx-space. Here the linear operator is no longer local. There are
at least two conserved quantities, namely, energyH and normN

H =
∫
D(k)aka

∗
k − 2

(2π)2

∫
a∗
k a

∗
k1
ak2ak3δ(k + k1 − k2 − k3)dk dk1 dk2 dk3,

N =
∫
aka

∗
k dk.

For a periodic domain of sizeL, the new dispersion is simply

DL(k) =
{
k2

1δ|k|,k1 + λk2
2δ|k|,k2, for |k| < kc,

k2, for |k| ≥ kc,
(5)

wherek = 2πm/L, m being an integer. In this case, the values ofk1 andk2 have to be chosen to be
compatible with the discreteness of wavenumbers, i.e. for someL, k1 = 2πm1/L andk2 = 2πm2/L for
some integerm1 andm2. Once these values are chosen, the limit of increasing largeL is taken at a discrete
set ofL-values, i.e.qL with q being integer, in order for us to be able to keepk1 andk2 fixed, regardless
of the domain size.

For this new system in a periodic domain, the trivialx-independent plane wave solution is the same as
Eq. (3) with the following Fourier representation

a
plane
k (t) = ALexp[i(2A2t + σ)] δk,0.

If there is a small perturbation aroundaplane
k (t)

ak = a
plane
k (t)+ εk(t)exp[i(2A2t + σ)],
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for

εk(t) = ηk exp(iωkt),

a simple linear stability analysis leads to

ω2
k = DL(k) (DL(k)− 4A2). (6)

Eq. (6) shows that if we choose the value ofA such thatk2
2 < 4A2 < k2

c, then (forλ = 1) there are only
two linearly unstable modes atk1 andk2 (there is only one linearly unstable mode atk1, if λ = 0). In the
following, we will refer to the case ofλ = 0 as the one-mode truncation model and the case ofλ = 1 as
the two-mode truncation model.

When perturbations of driving and damping similar to those in Eq. (2) are added, we have the following
equation:

iȧk = DL(k)ak − 2

L2

∑
p,q

apaqa
∗
p+q−k − iαak + LΓ ei(ωt+γ )δk,0 (7)

in a periodic domain with sizeL. In this model, we can address the question raised above, i.e. whether the
two-mode instability will give rise to exponentially decaying mutual information in space. This model
allows us to keepk1 andk2 fixed while enlarging the domain sizeL to eliminate finite-size effects. With
the increasingL, if the mutual information decays in space with decay rate becoming independent of
L, then, clearly, this model is an example of spatiotemporal chaos with only two instabilities. We will
investigate this question numerically.

3. Numerical method

The structure of Eq. (7) suggests that it is very natural to use the integrating factor method to remove
stiffness in the problem [8] and to employ a fast Fourier transform (FFT) pseudospectral method to deal
with the nonlinearity. This is achieved via a new set of variablesvk(t) which satisfy

vk(t) ≡
[
ak(t)− LΓ δk,0

iθk − ω
ei(ωt+γ )

]
eθkt , (8)

whereθk = iDL(k)+ α and

iv̇k = −2F+{|F−{ak}|2F−{ak}} eθkt , (9)

ak = vk(t)e−θkt + LΓ δk,0

iθk − ω
ei(ωt+γ ). (10)

HereF+ andF− stand for the Fourier and inverse Fourier transforms. A fourth-order adaptive stepsize
Runge–Kutta integrator is used for time integration for Eq. (9). In this numerical method, the modified
dispersion (5) does not introduce any additional numerical complications — if a directx-representation
of ψ(x) were used, one would have to solve an integral-differential equation inx-space. Total numbers
of modesN = 256, 512, and 1024 were used for various spatial sizes. The unstable mode wavenumbers
k1 = 0.409,k2 = 0.818, and the threshold wavenumberkc = 1.636 were chosen in all runs. The damping
coefficient isα = 10−6. The driving strength and frequency isΓ = 5 × 10−4 andω = 1, respectively.
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Fig. 1. Correlation function for one-mode truncation. Solid line:|C(x)|; dot-dashed line: ReC(x); dotted-line: ImC(r). They are
all normalized byC(0);L = 15.36.

4. Spatiotemporal chaos

Numerically, we compute both the mutual informationI(x−y) and the two-point correlation function

C(x) = lim
T→∞

1

LT

∫ T

0

∫ L

0
ψ(y, t)ψ∗(y + x, t)dt dy, (11)

where we have assumed spatial translational symmetry. We will use〈· · · 〉 to denote the average over
space and time. Note that〈ψ(·, ·)〉 = 0, which is verified numerically. In all runs, we wait for the system
to settle down, remove an initial transient and, then, use only the remaining solutions for the computation
of these statistical measures. Our results show that, for all system sizesL studied, the correlation function
does not vanish across the system for the case of the one-mode truncation (Fig. 1). This is intuitively
consistent with the corresponding evolution of the waveψ(x, t) observed for the one-mode truncation
as shown in Fig. 2, which should be contrasted with Fig. 3 for the two-mode truncation. Clearly, the
spatial profiles exhibit relatively regular patterns for the one-mode truncation compared with those of
the two-mode truncation, which are far more varied and “violent”. Note that the two spatial profiles
in Figs. 2 and 3 are shown over the same spatial range and for the same time duration. The temporal
chaotic nature of these evolutions are diagnosed numerically by positive Lyapunov exponents, Poincaré
sections, broad band power spectra, etc. [1]. For example, the largest positive Lyapunov exponents are
+0.11 and+0.34 for the one-mode and two-mode truncations (as shown in Figs. 2 and 3), respectively.
Corresponding to the evolution of dynamics of the one-mode truncation shown in Fig. 2, the surface
cross section{Reak=0(t), Im ak=0(t), ∀t} is shown in Fig. 4, and the Fourier power spectrum is in Fig. 5,
which has a very broad spectral band.

The “violent” wave evolution of the two-mode truncation should, intuitively, gives rise to statistically
less dependent time series ofψ(x, t) andψ(y, t) for ever increasing separation betweenx andy. This is
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Fig. 2. Evolution of the system (7) with one-mode truncation (λ = 0). Plotted here is|ψ(x, t)|. Only a portion of the system
(L = 30.72) is shown.

indeed the case: the mutual information for this case displays a clear exponential decay in space as shown
in Fig. 6. Fig. 6 displays the decay of mutual information for three different system sizes,L = 15.36,
30.72 and 61.44. For the small size,L = 15.36, there is a slight deviation from the exponential decay of
the larger sizes, signifying a finite-size effect. However as we increase the system size fromL = 30.72

Fig. 3. Evolution of the system (7) with two-mode truncation (λ = 1). Plotted here is|ψ(x, t)|. Only a portion of the system
(L = 30.72) is shown.
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Fig. 4. Temporal chaos: the surface cross-section{Reak=0(t), Im ak=0(t), ∀t} corresponding to the evolution ofψ(x, t) (Fig. 2).

to 61.44, their mutual information coincide with each other (as the data symbols almost lie top of each
other in Fig. 6 for these two cases). The best fit yields an exponential form

I ∼ exp

(
− x

ξI

)
(12)

Fig. 5. Temporal chaos: broad band Fourier power spectrum ofak=0(t) corresponding to the evolution ofψ(x, t) in Fig. 2.
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Fig. 6. Decay of mutual information in space for different periodic spatial domain sizeL. Squares:L = 15.36; triangles:
L = 30.72; circles:L = 61.44. The straight line is an exponential fit:I ∼ exp(−x/0.186).

with ξI = 0.186. The numerical result here demonstrates that, asL becomes larger and larger, there is
an exponential decay of mutual information for the two-mode truncation and the exponential decay rate
becomesL-independent. This provides a clear example of spatiotemporal chaos in the presence of only
two unstable modes — waves at large separations become statistically independent, leading to the loss
of information in space as characterized by the decaying mutual information.

Finally, we discuss the property of the distributionPx,y≡px,y(ψ(x), ψ(y)), which underlies these
mutual information and correlation function measurements. For a Gaussian distribution, obviously, the
mutual information is determined by the two-point correlation function [3,5]. As shown in [3,5] in the
Gaussian case, the mutual information decay lengthξI is related to the correlation decay lengthξC by

ξC = 2ξI . (13)

For the two-mode truncation, the two-point correlation (11) also exhibits an exponential decay as shown
in Fig. 7. The measured decay length isξC = 0.383. Note that the ratio ofξC/ξI is 2.06, there being
only about 3% deviation from the exact factor 2 of a Gaussian distribution. This approximate relation has
also been observed for many spatiotemporal chaotic systems [9,10]. We point out that this approximate
relation only indicates that the distributionPx,y = px,y(ψ(x), ψ(y))may be nearly Gaussian. Fig. 8 is a
plot of our numerical measurement of kurtosisK31 for the distributionPx ,y in the case of the two-mode
truncation.K31 is defined as follows:

K31(x − y) ≡ 〈R3(x)R(y)〉 − 3〈R(x)R(y)〉〈R2(x)〉
〈R2(x)〉〈R2(y)〉 , (14)

whereR(x)≡Reψ(x) andR(y)≡Reψ(y). (In Eq. (14), it is implicitly assumed that〈R(x)〉 = 0, which
is verified numerically.) For a Gaussian distribution,K31≡0. Note that we can obtain the exponential
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Fig. 7. Correlation function |C(x)| for two-mode truncation;L = 61.44. The straight line is an exponential fit:
|C(x)| ∼ exp(−x/0.383).

decay of the mutual information or correlation function over the range of separationsx even forx .
1.75. In this range of separations, Fig. 8 clearly shows thatpx,y(ψ(x), ψ(y)) is not Gaussian. It is also
important to note that the decay ofK31(x − y) for large separations does not necessarily indicate that
Px ,y becomes more Gaussian as the distance|x − y| increases, sinceK31 can vanish as a consequence of

Fig. 8. KurtosisK31(x) for the distributionpx,y(ψ(x), ψ(y)), y = 0;L = 61.44.
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statistical independence betweenR(x) andR(y), which may not possess a Gaussian distribution between
themselves. Due to spatial translational symmetry,K31(x − y) is independent ofy. Although in Fig. 8,
y = 0 is chosen,K31(x − y) does exhibit the same behavior for anyy in our numerical measurements.
Finally, we mention that similar results also hold for the kurtosisK22 (not shown), which is

K22(x − y) ≡ 〈R2(x)R2(y)〉 − 2〈R(x)R(y)〉2 − 〈R2(x)〉〈R2(y)〉
〈R2(x)〉〈R2(y)〉 . (15)

5. Conclusion

Chaotic nature of dispersive wave turbulence is central to the understanding of nonlinear dispersive
waves. The statistical properties of spatial structures over long times can describe whether spatial informa-
tion is lost or not over large distances. Spatiotemporal chaos arises when wavesψ(x, t) andψ(y, t) become
statistically independent over large separations|x−y| → ∞. We have demonstrated how to use the decay
of mutual information to capture this statistical increasing independence of waves over separations. In
our earlier works [2–4], the mutual information measure did capture theonsetof spatiotemporal chaos in
a perturbed NLS with onlytwo instabilities. However, as we mentioned above, in the case of the NLS, the
number of unstable modes scales linearly with the periodic domain size. Hence, for the perturbed NLS,
there is a possible difficulty of finite-size effects in asserting an exponential decay of mutual information
over large separations for a small number of instabilities. In the present work, to address the issue of
finite-size effects, we use a modified dispersion to obtain a model system which enables us to keep the
number of unstable modesfixedwhile the domain sizeL increases. The results of our numerical study of
this model system demonstrate that (1) the dynamics exhibits spatiotemporal chaos as measured by an
exponential decay of mutual information in space, in the presence of only two unstable modes, with the
decay rate becomingL-independent in the largeL limit; (2) there is a statistical correlation over the entire
system, when there is only one unstable mode. The temporal dynamics of the both cases is chaotic. This
spatially extended model system provides a further example of spatiotemporal chaos which arises from
a very small number of instabilities, in contrast to the common belief that spatiotemporal chaos requires
systems with many unstable modes [6,11–13].
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