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Architectural and synaptic mechanisms underlying
coherent spontaneous activity in V1

David Cai**, Aaditya V. Rangan*, and David W. McLaughlin**

*Courant Institute of Mathematical Sciences and *Center for Neural Science, New York University, New York, NY 10012

Contributed by David W. McLaughlin, March 8, 2005

To investigate the existence and the characteristics of possible
cortical operating points of the primary visual cortex, as mani-
fested by the coherent spontaneous ongoing activity revealed by
real-time optical imaging based on voltage-sensitive dyes, we
studied numerically a very large-scale (=5 x 105) conductance-
based, integrate-and-fire neuronal network model of an ~16-mm?2
patch of 64 orientation hypercolumns, which incorporates both
isotropic local couplings and lateral orientation-specific long-range
connections with a slow NMDA component. A dynamic scenario of
an intermittent desuppressed state (IDS) is identified in the com-
putational model, which is a dynamic state of (i) high conductance,
(ii) strong inhibition, and (i) large fluctuations that arise from
intermittent spiking events that are strongly correlated in time as
well as in orientation domains, with the correlation time of the
fluctuations controlled by the NMDA decay time scale. Our simu-
lation results demonstrate that the IDS state captures numerically
many aspects of experimental observation related to spontaneous
ongoing activity, and the specific network mechanism of the IDS
may suggest cortical mechanisms and the cortical operating point
underlying observed spontaneous activity.

fluctuation | neuronal networks | optical imaging | spatiotemporal
patterns | horizontal connection

Traditional views of cortical information processing have em-
phasized the activity of single neurons. Alternatively, in popu-
lation coding, spontaneous cortical activity of single neurons is
often regarded as mere noise that carries no functional significance
and, as a consequence, should be averaged out by pooling to yield
signal (1-3). However, recent experimental evidence has revealed
interesting structure in these spontaneous cortical fluctuations and
implies that response variability arises from nonrandom, correlated
interactions and that spontaneous activity has a significant impact
on neuronal responses (4-7). Advances in real-time optical imaging
based on voltage-sensitive dyes (VSD) (8, 9) have opened up new
opportunities for exploring population activity (10). With high
spatial and temporal resolutions, the real-time optical imaging using
VSD has made it possible to capture activity in neuronal dendrites
that cannot be easily explored by single unit recordings. Experi-
mental results such as provided by the VSD optical imaging in
combination with single unit recordings are particularly powerful in
unravelling the neuronal network mechanisms because, together,
they strongly constrain network dynamics. These measurements
provide both spatial and temporal information in concert with
individual neuron activity, and thereby can help to discriminate
sharply between competing neuronal network mechanisms. The
real-time optical imaging of the cat primary visual cortex by using
VSD has revealed beautiful, coherent spatiotemporal structures of
ongoing spontaneous activity of neuronal ensembles over imaged
areas of approximately millimeter sizes (12, 13). It is found that the
ongoing activity exhibits a high degree of synchrony over approx-
imately millimeter scales, and that the spatial structures of cortical
states associated with evoked activity are strongly correlated with
those of spontaneous activity.

The observed spontaneous ongoing activity suggests an
intriguing possibility that spontaneous cortical states possess
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strong functional significances by providing a cortical operat-
ing point, in interaction with external stimuli, for sensory
information processing (11). Because spontaneous activity is
in the absence of external stimulation, theoretical emphasis
can be focused on a purely cortical model, with less modeling
complications arising from processes related to retina or LGN.
Two mechanisms or operating points have been hypothesized:
(i) The ongoing spontaneous activity reflects the system
wandering through a set of intrinsic cortical states which are
closely related to orientation maps (4, 8, 12-14). In this view,
the intrinsic cortical states are localized, broken-symmetry
states that can be locked to a weakly tuned drive. (ii) The
second view is single-state hypothesis, that is, the spontaneous
ongoing activity is merely the dynamics of a single background
state, driven by cortical noise (14). In ref. 14, these two models
are contrasted, but simulations in ref. 14 are inconclusive in
differentiating which mechanism is in operation.

In this article, by using a very large-scale computational
model of V1, we have (i) identified a distinct operating point
in which the model reproduces recent experimental observa-
tions (12, 13) of spontaneous ongoing activity obtained by
real-time VSD optical imaging; and (i) identified precisely the
mechanisms by which the model operates in this cortical state.
Our fast algorithm for large scale, integrate-and-fire conduc-
tance-based neuronal networks (developed and described
elsewhere) enables us to integrate a network with sufficient
lateral extent to capture spontaneous cortical activity, namely,
anetwork of ~5 X 103 neurons, covering an ~16-mm? cortical
patch, with 64 orientation hypercolumns. By incorporating
lateral, orientation specific long-range (LR) connections, to-
gether with the slow time scale of NMDA receptors, our
simulations show that when the model cortex is in a cortical
operating state of intermittent desuppression (described in
Discussion), it exhibits spatiotemporal coherent ongoing ac-
tivity that captures the experimental observations. As dis-
cussed below, this intermittent desuppressed state (IDS) is a
dynamical state of the model cortex of (i) high conductance
and (i) strong inhibition, which operates in a regime driven by
(iii) strong temporal fluctuations. These specific network
mechanisms in the model cortex in turn suggest cortical
mechanisms underlying the observed spontaneous activity in
anesthetized cat.

Methods

A patch (=16 mm?) of primary visual cortex is modelled by a
network of ~5 X 10° coupled, conductance-based, integrate-
and-fire neurons, composed of 75% excitatory and 25% inhib-
itory cells, which are distributed uniformly over a two-
dimensional lattice with periodic boundary conditions. This
patch is tiled with 64 orientation hypercolumns with an orien-

Abbreviations: AMPA, a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; IDS, inter-
mittent desuppressed state; VSD, voltage-sensitive dye(s); LR, long range; PCS, preferred
cortical state; SI, similarity index; SSAP, spike-triggered spontaneous-activity pattern.

*To whom correspondence should be addressed. E-mail: cai@cims.nyu.edu.

© 2005 by The National Academy of Sciences of the USA

www.pnas.org/cgi/doi/10.1073/pnas.0501913102



Lo L

P

1\

=y

~N\\1/

Fig.1. Instantaneousspontaneous activity. (A) Network architecture. Periodic tiling of 64 orientation hypercolumns, with the orientation preference singularity
(pinwheel center) indicated by the small white dots. The color at a spatial point labels the orientation preference of the neuron at that location. The isotropic
local excitatory coupling length scale is indicated by the radius of the large white disk, which is obscured by the black disk, whose radius indicates the length
scale of the local inhibitory coupling. The large ellipse indicates the spatial extent of the lateral LR connections; the rhombuses indicate the orientation domains
in which the neurons are connected by the LR coupling to the neurons in the orientation domain marked by the small white circle. (B) Instantaneous spontaneous
activity pattern V(x, t). The black mask is obtained by thresholding the level of instantaneous membrane potentials of the model neurons. The black area
corresponds to low activity locations, where neurons have low values of membrane potential, whereas the “window'’ area corresponds to areas of high activity,
where neurons have high values of membrane potential. These neurons are further labeled by colors to indicate their preferred orientation as tiled in the
numerical cortex (which is the same as the distribution of orientations as shown in A). Two ovals indicate regions over which voltage activity can be highly
correlated in time. (C) Another spontaneous activity pattern. A state with two emerging orientation preferences, which occupy mostly separate cortical regions
but with a small overlap due to the LR synaptic connections of similar orientations, is shown. (For clarity of visual presentation, we used periodic boundary

conditions to shift one hypercolumn down relative to A and B.)

tation preference singularity at their centers (pinwheels; Fig. 1.4)
(15-17). The dynamics of our network is governed by

d
21 V00 = =gV (%) = Vil = 8" (x, V(%) = V]

—gMx O - Vi, (1]
where x indexes the spatial location of the neuron on the cortex,

= FE, I labels excitatory or inhibitory neurons. When the
voltage of a cell reaches the threshold of —55 mV, the spike time
T is recorded and the voltage is reset to the reset potential —70
mV with a refractory period 7f = 2 ms. We use normalized
units, in which the voltage threshold becomes V7 = 1; the reset
potential becomes Viyeser = 0; and the reversal potentlals become
Ve=0,Vg=14/3, and V; = —2/3, for the leak, excitatory, and
1nh1b1tory conductance, respectively, g; ' = 20 ms (for conver-
sion to physiological units, see ref. 18). The conductances have
the form

%'

EV(x, 1) = Folx, 1) + SP D K3, D) GY.(t — Th)
l

“’E K2, Gt = TY),
1

where A, A’ = E, I and TY is the [th spike of the neuron located
at X, The second term models the isotropic local connectlons
S$" is the local couplmg strength; and KJ e = (1/
mory)exp(—|x — x'[2/a%,), with oz and o), being the excita-
tory and inhibitory spatial scales, respectively (o\g,onr ~ 100-
300 um.) The time course of the synaptic conductance, G, is
an o function with rise time 7™ = 0.5 ms, r-*P* = 0.5 ms and
decay time 7 MPA = 30 ms, TABA = 70 ms for a-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and
GABAA type, respectively. The third term models the anisotro-
pic, orientation- s%eaflc LR connections, which are solely exci-
tatory, (hence, S}” is the LR coupling strength and S}’ = 0) and
are taken to prOJect onto both excitatory and inhibitory cells (15,
19-21). Ky takes an elliptical Gaussian form with spatial scale
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o, ~ 1500 wm, suitably modified to account for the eccentricity
of the LR patch connection (22). The coordinate x of a neuron
also encodes the preferred orientation 6.p(x) of the neuron
because pinwheels are overlaid on the lattice. The primed
summation denotes that LR connections to x involve only cells
at locations x’ of similar orientation preference (within the
angular spread A6, to Oop(x), AfLr = 7.5° and excluding its
own hypercolumn of x). The conductance time course has the
form GE(t) (1 - A)GAMPA(l) + AGNMDA(t) where A
denotes the percentage of NMDA receptor contribution to the
total LR conductance (23— 27) GAMPA(I) is the same as G3(¢),
and the NMDA time course is given Bly Gnmpal(t) = l\Lexp( -t/
HMPAY — exp(—t/ NMDA) with 7 = 0.6 ms, 'Td =80
ms (28), where g, is a constant (29, 30). Both G ,(f) and
Gnwmpa(?) are normalized to have unit integral. Fy (X, t) models
the input to cortex due to spikes from the LGN driven by external
stimulus and from the background noise to V1. In the absence
of external stimulus, this input is modeled as independent
Poisson spike trains to each cell, with a spatially homogeneous,
constant rate to maintain a background firing rate v of approx-
imately two to five spikes per second per neuron. Detailed
modeling of effective external stimuli is as described in ref. 31.
We note that our network is an effective or “lumped” model of
V1 because we do not include the detailed laminar structure of
V1 in our modeling, consistent with the fact that the signal of the
real-time optical imaging using VSD measures the sum of the
membrane potential changes in all the neuronal elements in the
imaged area with emphasis on the subthreshold synaptic poten-
tials and dendritic action potentials in neuronal arborizations
originating from cells in all cortical layers whose dendrites reach
the superficial layers (10). We have developed a fast integrator
algorithm in order to solve system 1 with 10°-10° neurons.

Results

In Fig. 24, we display the preferred cortical state (PCS) of a
neuron, defined as the spatial pattern of the average voltage
Ve(x; Oop) = 2 V(x, 1 0op) /Ny, evoked by a strong stimulus at
the optimal orientation 6, of the neuron, where # is the ith spike
time of the neuron and Ny is the total number of spikes, as in the

PNAS | April 19,2005 | vol. 102 | no.16 | 5869

NEUROSCIENCE



E Cy F Cst

05 05

0
0 50 100 150 200
Time (msec)

0
0 50 100 150 200
Time (msec)

1000 2000 3000

Time (msec)

VI P: I
0. 1. 1. 0.

Fig. 2. Three dynamical regimes of the network. (A) PCS Vp(X; 6op) across an
area of 4 X 4 hypercolumns in the model. (B-D) SSAP V(x) across an area of
4 X 4 hypercolumns in the IDS, homogeneous, and locked states, respectively.
The value of Vin A-D is indicated by the color bar at the bottom of the left
column. (E and F) Time correlation of voltage trace V(t) and the S g, respec-
tively. (G, I, and K) The evolution of SI, p(64; t), for all 64, for the IDS,
homogeneous, and locked states, respectively. p(6g; t) is the correlation coef-
ficient between the instantaneous voltage pattern V(x, t) and the PCS Vp(x; 04)
evoked by the drive of orientation 64.1 The value of p is indicated by the color
bar at the bottom right. (H, J, and L) The time trace of SI, p(6q; t), for 64 = —60°,
for the IDS, homogeneous, and locked states, respectively. Note, in particular,
the pattern and the time scale of p(6g; t) for the IDS state.

real-time optical-imaging experiments (12, 13). Following the
same quantifications of the spontaneous activity patterns as in
the experiment described in refs. 12 and 13, we compute (i) the
similarity index (SI), which is the spatial correlation coefficient
0(0op; t) between the PCS Vp (x; 6,,) and the membrane
potential V(x, t) of our network (we used an area of 4 X 4
pinwheels to evaluate SI, which conforms with the relevant size

TNote that for a drive with orientation 6, all neurons with their preferred orientation equal
to 64 will generate the same PCS, which we refer to as the PCS Vp(x; 64) evoked by the drive
of orientation 6.

5870 | www.pnas.org/cgi/doi/10.1073/pnas.0501913102

used in experiment); and (i) the spike-triggered spontaneous-
activity pattern (SSAP); ie., Vu(x) = =; V(x, 1/)/Ny of the
network without stimulus, triggered on the spike times of a
neuron with the same preferred orientation 6,,. Our simulation
demonstrates that the network exhibits three distinct dynamical
regimes for spontaneous activity patterns. The strength of LR
synaptic connections determines these regimes, with all remain-
ing parameters fixed.

First, an IDS regime, created by a moderately strong LR
coupling, giving rise to an SSAP Vy(x) (Fig. 2B) that strongly
resembles the PCS Vp (X; 6,,) of the neuron, as seen by
comparing Fig. 2.4 and B. Fig. 2G shows the evolution of p(64;
1), which shows the ongoing activity of emergences of a spon-
taneous activity pattern of a particular orientation, drifting to
neighboring orientations in time and disappearing. Fig. 2 G and
H show that the typical duration of smooth transitions between
neighboring orientations is ~80 msec, as further quantified by
the decay time in the SI autocorrelation (Fig. 2F). Fig. 3 4 and
B display the distribution, respectively, of the all-time SI (i.e.,
computed by using the instantaneous voltage patterns for all
times) and of the spike-triggered SI (i.e., computed by using only
the instantaneous voltage patterns triggered on the spikes of a
neuron). Together, these results clearly show that the sponta-
neous cortical states in our simulation produce SI behavior
similar to that measured in the experiment in terms of distri-
bution and time course of SI (12, 13). Fig. 3C describes the firing
rate for the neuron as a function of SI, which reproduces the
experimentally observed asymmetry: the more likely the neuron
is to fire, the larger the values of the SI. We observe that the time
scale 7, of the SI fluctuations is approximately the same as the
time scale 7, of the membrane potential fluctuation, as shown in
Fig. 2 E and F. (See a description of the cortical mechanism
underlying this dynamic regime in Discussion.)

Second, a homogeneous regime, created by weak LR cou-
plings, that exhibits a spatially homogeneous cortical state whose
SSAP is depicted in Fig. 2C. The pattern is not correlated with
the PCS (i.e., it no longer encodes the orientation preference of
the neuron), and the evolution (as shown in Fig. 2 I and J) of the
SI fluctuates around zero with a very small variance of ~0.06 (as
further corroborated by Fig. 3 D and E), which is much smaller
than experimentally observed values (12, 13). The firing rate for
the neuron vs SI (Fig. 3F) in this regime fails to capture the
experimentally observed shape. These results show that our
homogeneous regime reproduces in the large-scale neuronal
network the behavior of the “homogeneous phase” studied in
ref. 14 in idealized mean-field models.

Third, a dynamically locked regime, created by very strong LR
couplings, which locks an SSAP to particular orientations that
may or may not be the preferred orientation of the neuron. Fig.
2D shows such a locked pattern of nonpreferred orientations,
which persists in time for many tens of seconds or longer, as
shown in Fig. 2K. When a particular locked pattern is not the
same as the PCS, then the SI will be small for the duration of
locking (Fig. 2L). In this locked regime, the distribution of the
SI (Fig. 3G) reveals that the spontaneous cortical states do not
correlate with the PCS for most of the total simulation time of
256 s. In our simulation, the network locks to such a broken-
symmetry state (32) of orientation for a long period, then drifts
to another broken-symmetry state. Fig. 3H shows that for the
total duration of the simulation time of 256 s, the network has
only wandered through approximately six of such broken-
symmetry states. These results show that the dynamics of this
locked regime is similar to that of the marginal phase in ref. 14.
As pointed out there, all these features are inconsistent with
experiment. We observed that the transition from the fluctua-
tion-dominated IDS regime to the locked regime is rapid: onl
a small percentage of change in the LR coupling strength S}
switches the network from the IDS to the locked state.

Cai et al.
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Fig. 3. Similarity index of different dynamical regimes. (A, D, and G) The distribution Pa(Sl) of the all-time SI for the IDS, homogeneous, and locked states,
respectively. The all-time Sl was computed by spatially correlating Vp(x; 64) for a fixed 64 with the instantaneous spontaneous voltage pattern frames sampled
attherate vs = 1frame per millisecond for a total duration T = 2565. (B, E, and H) The distribution Ps(Sl) of the spike-triggered Sl for the IDS, the homogeneous
state, and the locked state, respectively. The spike-triggered SI was computed by spatially correlating Vp(x; 64) for the same fixed 64 as in A, D, and G, with the
instantaneous spontaneous voltage patterns sampled only on the spike times of Ns; neurons that have the same orientation preference 6o, = 64in a small area
for the same duration T = 256 s. (We used the number of neurons Ns; = 64 instead of one neuron here to improve statistics.) (C and F) The firing rate (spikes
per second) as the function of the SI for the IDS and the homogeneous state, respectively. This curve is constructed by [(Ps(SI)/Ns))/Pa(SD)] X wvs. (I and J) We
collected instantaneous voltage pattern frames V(x, t, 64) (sampled at the rate vs) evoked by drives of all possible orientations, 64 € [0, 7). (/) The ON distribution
of SI. The values of Sl used to obtain the ON distribution were generated by correlating each V(x, ton, 04) (frames recorded over the stimulus-on intervals) with
the PCS Vp(X; 6op) of a neuron. (J) The OFF distribution of SI, similarly obtained by using V(x, toff, 64) (frames recorded over the stimulus-off intervals). (K and L)
We collected instantaneous voltage pattern frames V(x, t, 6,p) (sampled at the rate vs) evoked by the drive of fixed 6y = 6o, of @ neuron. (K) The ON distribution
of SI. The values of Sl used to obtain the ON distribution were generated by correlating each V(x, ton, 6op) (frames recorded over the stimulus-on intervals) with
the PCS Vp(x; 6op) of the neuron. (L) The OFF distribution of Sl, similarly obtained by using V(x, toff, 6op) (frames recorded over the stimulus-off intervals). [The
ordinate for A, B, D, E, and G-L is the number of frames (NF).] (M) The time trace of SI, p(6op; t), under a periodic drive of orientation 65 = 6op, Which is on for

1 s and then off for 2 s, as indicated by the teeth. (N) The cycle-averaged trace of the Sl evolution in M (two cycles displayed).

In the IDS regime, we note that any particular pattern of the
coherent spontaneous activities can persist, or smoothly transition
to neighboring orientations, typically for ~80 ms and its spatial span
can cover the entire extent of the network. Such a dynamic cortical
state is shown in Fig. 1B. Here, we see clearly that those spatial
patches of high activity lie over the isoorientation domains corre-
sponding to the “blue-green” angles. We note that any two non-
overlapping regions of these orientation domains of high activity
(for example, regions marked by two ovals in Fig. 1B) tend to
emerge simultaneously or follow each other closely in time as the
pattern slowly drifts continuously in space. This phenomenon arises
from nearly synchronized voltage over domains of similar orienta-
tions over large distances (of scales of many pinwheels) caused by
the LR synaptic connections as explained in Discussion. This
phenomenon is observed experimentally (13).

It is important to emphasize that not all these patterns have to
span the entire network with a single orientation preference. Fig.
1C shows a spontaneous cortical state with two emerging
orientation preferences (angles labelled by “green-cyan” and
“purple-red,” respectively), which predominantly occupy sepa-
rate cortical regions with small penetrations into each other’s
territory because of the LR synaptic connections of similar
orientations. Note that, in this particular case, these two orien-
tations (green-cyan vs. purple-red) happen to be orthogonal to
each other. The cortical state in Fig. 1C has many instances in
which high activity of two orientations, orthogonal (e.g., green-
cyan vs. purple-red, or blue vs. yellow) or neighboring (e.g., blue
vs. cyan or blue vs. purple) can be present simultaneously in a
single pinwheel. Cortical patterns of a multi-preference type are
not necessarily fast transient states between two robust patterns
of single orientation preferences because they can also persist as
fluctuating, long-lived (=80 ms, not seconds), drifting cortical
states in the IDS regime. These features would be difficult to
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account for by using the notion of marginal phase (12, 14, 32)
(see also the discussion of locked regime above).

Next, we turn to evoked cortical states: Here, we fix the LR
coupling strength such that our network dynamics is in the IDS
regime in the absence of a stimulus. Under the LGN drive of the
optimal orientation of a neuron, which is turned on and off
periodically, the spike-triggered activity patterns produced in our
network look essentially similar to the PCS (data not shown). The
time evolution of SI is shown in Fig. 3M, which shows that, when the
stimulus is on, the activity patterns tend to rapidly swing into
positive values of SI (i.e., to correlate more with the PCS of the
neuron for the whole evoked duration), as further corroborated by
the positive mean in the SI distribution shown in Fig. 3K and by a
cycle-averaged SI time course (Fig. 3N). An important feature of
the SI time course (Fig. 3M) is that, when the stimulus is just turned
off, the SI tends to quickly swing into negative values of SI and, then,
gradually moves back towards zero, as accentuated by the cycle-
averaged SI time course (Fig. 3N) and further illustrated by a
negative mean in the SI distribution in Fig. 3L. Note that all of these
features, including “negative-swing” phenomenon, are observed
experimentally (12, 33).

We further describe how the dynamics of the cortical activity
states are modulated by the stimulus in this evoked IDS regime. Fig.
31 plots the ON distribution of SI that is computed by using only the
instantaneous voltage patterns evoked by drives of all possible
orientations 6, over the stimulus-on intervals, which is then corre-
lated with the PCS of a neuron, whereas Fig. 3/ plots a distribution,
obtained the same way except over the stimulus-off intervals (which
will be referred to as the OFF distribution). Because all drive
orientations 6, are included, these distributions are obviously
symmetric. However, the OFF distribution has a much narrower
width than the ON distribution, implying that under the modulatory
effect of the stimulus, the cortex is driven into a highly correlated/

PNAS | April 19,2005 | vol. 102 | no.16 | 5871
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anticorrelated state much more often over the stimulus-on intervals
than the base-line state of the stimulus-off intervals, a fact that is
distinct from the marginal phase scenario (12, 14, 32).

Discussion

Next, we turn to a discussion of the underlying mechanisms for
the IDS cortical state or operating point. A key feature of IDS
is the rapid recruitment of excitatory neurons in an orientation
domain. After a short transient, the network dynamics settles
into the IDS state, in which the neurons in an orientation domain
become nearly synchronized statistically, with a single sponta-
neous firing of one neuron leading to a recruitment of many
nearby neurons, i.e., they all fire within a few milliseconds after
one another. This excitatory recruitment event induces desup-
pression in our strongly inhibited network, immediately recruit-
ing neurons of similar orientation preferences via strong gnmpa
synaptic couplings across the area covered by the LR connection
(as shown schematically in Fig. 1.4). The recruitment may spread
to almost all similar orientation domains by means of cascading
events, giving rise to a near voltage synchronization statistically
over these orientation domains and to the voltage spatial pattern
statistically resembling the PCS of this orientation (i.e., a higher
SI value). (Note that this high SI is also correlated with a higher
firing rate because there are more firings in the cascading
recruitments. Hence, the asymmetry in Fig. 3C).

The IDS state can be more completely and thoroughly un-
derstood by combining this recruitment mechanism with the
“correlation mechanisms” at a strongly inhibited, high conduc-
tance state. The governing equation for a single integrate-and-
fire neuron in our network can be cast as V = —gr(V — Vs).gr =
gL + g t+ &1, & = 8AMPA + gnMDA, &1 = 8GABA, Vs =
g7 (eLVr + g&VE + gV7) is the slaving potential. The postan-
alysis of our network simulation shows that the IDS state
operates at a hlgh conductance state; i.e., gr =>> g, (with the
time scale g7' much shorter than that of the NMDA synaptlc
fluctuations) in a strongly inhibited regime (34); i.e., Vg is much
below Vr for most of time and gg/g; << 1 (ge/gs ~ 0.1-0.2 in
our simulation). This state is clearly not any state of a balanced
network (35). It is observed that, in the IDS state, gnmpa =>
gampa. Hence, the strong inhibition, gg/g; << 1, yields Vs ~
(gnmpa/gr)VE + Vi, as confirmed in Fig. 44.% Therefore, the
membrane potential V' is slaved to Vs (36) over the time-scale of

~ O (10 ms) (thus, certainly on the NMDA time scale of the
predommant synaptic fluctuations) and is strongly correlated
with the ratio gnmpa/gr. In addition, it is observed that the
inhibitory conductance g; increases sublinearly with the synaptic
NMDA input gnmpa statistically, as shown in Fig. 4B. Therefore,
the subthreshold V' is positively correlated with the gnmpa of a
neuron in the IDS regime, inducing correlation between the
voltage spatial pattern of our network and the NMDA conduc-
tance spatial pattern. Thus, in the IDS state, we have a sequence
of correlations: V(t) ~ Vs(t) ~ (gnmpa/gr)VeE + Vi ~ gnmpa-
These correspondences show, for example, that in the recruit-
ment events, a spontaneous firing of one neuron can be triggered
by an increase of its fluctuating synaptic input gnmpa Or by a
decrease of its g; and that a desuppressing recruitment event
immediately increases the gnvpa substantially of the neurons of
similar orientation preferences across the area covered by the
LR connection and, thus, gives rise to a near voltage synchro-
nization statistically over these orientation domains.

In addition, the recruitment events simultaneously evoke a strong
inhibitory suppression by local connections, extinguishing the re-
cruitment locally, leaving the gnmpa to decay naturally, thus leading
to a gradual decay of the voltage pattern of this angle because of the

SNote that the strength of the LR NMDA excitatory connection is comparable with the local
AMPA but much weaker than the local inhibition.
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Fig. 4. Correlation mechanisms. (A) The statistical relationship between Vs
and the ratio gnwpa/gr, Where g = gaasa, Which plots Vs(ts) vs. gnmpa(ts)/gi(ts)
at the same sampling times t;, which are sampled at a fixed rate, where V(t),
gnmpalt), gi(t) are typical time traces of slaving voltage, the NMDA conduc-
tance, and inhibitory conductance, respectively, from our simulation in the IDS
state. (B) The statistical relationship between g, and gnvpa, Which plots g (t;)
vs. gnvpa(ts) at the same sampling times t;, which are sampled at a fixed rate,
from typical time traces of g/(t) and gnwvpa(t) from our simulation in the IDS
state. (C) The two upper traces are typical time traces of gnmpa(t) and g((t),
which clearly are strongly correlated with a fluctuation time scale of 0 (80 ms)
[Note that, obviously, g/(t) has also a faster time scale of the GABA conduc-
tance decay time 0 (r$*%4).] The vertical bars indicate the relative values of the
conductances. Bottom traces show typical time traces of Vs(t) (but with
stronger fluctuations than the typical case) for two model neurons in the IDS
state that are ~0.5 mm apart spatially and are not spiking for the duration
shown here but with a strong correlated evolution. The vertical bars indicate
the value of the voltage in our nondimensional units. Note that the Vs(t)-
gnmpal(t) correlation is clearly observed here.

strong V—gnmpa correlation. Clearly, the decay time of this voltage
activity pattern is controlled by the decay time scale of gnmpa, On
O (80 ms). Note that under this decaying gnmpa, the inhibitory
neurons gradually reduce their firing rate over the same time scale.
Fig. 4C (upper traces) shows this correlated evolution of gnympa and
gcana With a fluctuation decay time of ~50-100 ms after each rapid
rise, which is induced by intermittent recruitment events. Last,
because of the angular spread of the LR connection and a higher
recruitment probability arising from a large gnmpa, the voltage
pattern can also drift to a nearby preference, as shown in Fig. 2G.

We point out that our network in the IDS cortical state
exhibits additional noteworthy dynamic features that are con-
sistent with experimental observations.

First, the spontaneous fluctuations of the membrane potentials
V' (¢) for neurons located in a small cortical area (less than ~0.5 mm)
in our network can be strongly synchronized even when they are not

Cai et al.
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spiking, thanks to their common synaptic inputs from LR connec-
tions. Typical V' (¢) traces of such two cells are shown in Fig. 4C (two
bottom traces). These traces exhibit a strong similarity to the
synchronized spontaneous fluctuations reported in ref. 7 of the
intracellular recordings, which are not caused by mutual intercon-
nections by spiking. A time correlation function for V' (¢) is plotted
in Fig. 2E, which shows a decay time 7, of O (80 ms), similar to what
is observed in intracellular measurements (7). Clearly, 7, ~ 7, is
directly related to the fluctuation time scale in the synaptic con-
ductance inputs by our mechanism. We note that the correlated
spontaneous fluctuations in our network instantiates that the
so-called spontaneous noise, usually associated with response vari-
ability, should be carefully modeled because a mere pooled aver-
aging may not sharpen signals (4, 6, 7), contrary to the common
practice in population coding.

Second, an important aspect of our modeling is that the LR
synaptic coupling contains NMDA conductance. In our IDS re-
gime, the persistence time scale 7, of an activity pattern is controlled
bz the NMDA conductance decay time scale. A shorter (or longer)
7 MPA will produce a shorter (or longer) 7,. This NMDA-mediated
spontaneous activity is consistent with experimental observations
that blocking NMDA receptors with the antagonist APV in vivo
can substantially reduce random, spontaneous activity of cells in the
cat visual cortex (24, 27). Although the ratio A of the NMDA
contribution can be as small as 5% to obtain all the IDS features by
adjusting the LR coupling strength, it cannot be set at zero; i.e., the
LR connection cannot be purely AMPA. Blocking the NMDA, the
dynamics of our network can be readjusted, by strengthening
AMPA, into an IDS regime to exhibit similar distributions of SI and
similar spatial activity patterns (data not shown) to the PCS.
However, the persistence time scale of the pattern fluctuations is
too short: only ~20 ms (data not shown), which is not consistent
with experiment (7, 13) either in terms of patterns drifting (13) or
the time scale of spontaneous fluctuations (6, 7).

Third, the negative-swing of SI (Fig. 3 M and N) observed in our
network in the evoked IDS regime is consistent with the scenario
of disinhibition from cross-orientation sites, i.e. cells in cat visual
cortex show increase in response to nonoptimal orientations during
inactivation of a laterally remote, cross-orientation site (37, 38). The
optimal isoorientation domains in our entire network, with the
presence of strong NMDA conductance, have excitatory recruit-
ment enhancements when the stimulus is on. In turn, these recruit-
ment events induce more firings of inhibitory cells, thus enhancing
suppression of activities in the surrounding domains of other
orientations. Hence, more frequent positive large values of SI
during the stimulus-on period (Fig. 3N). As soon as the stimulus is
switched off, this inhibition is reduced, giving rise to a potential
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increase in activity in nearby domains. Because the domains with
the orthogonal orientation were the least inhibited, the disinhibition
induces a quick excitatory recruitment, generating high activity
there, in turn suppressing other domains. Therefore, this process
produces a spatial activity pattern that is anti-correlated with the
PCS after the stimulus is switched off. Hence, the negative-swing in
SI (Fig. 3N). These positive and negative swings were observed
experimentally (12, 33), as commented above. We note that, in our
network, the effective spatial scale of cross-orientation inhibition,
which is transmitted by the LR NMDA coupling, can be over several
millimeters, therefore, involving many pinwheels.

It is worthwhile to comment about some additional important
model characteristics in our network. (i) We do not invoke struc-
tured feedback from higher cortical regions or a correlated LGN
background firing to produce the spontaneous fluctuating cortical
states, because the background inputs to our network have no
spatial nor temporal structure; they are merely independent Pois-
son spike inputs to every neuron with the same constant rate. (i)
In our network, there are two types of cells (i.e., simple and complex
cells) of an equal proportion. They are modeled by different
strengths of their short range connections: Complex cells have a
stronger cortico-cortical interaction and weaker or no inputs from
the background. The spike-triggered SI distribution (Fig. 3B) can be
viewed as the sum of two Gaussian-like contributions from these
two types of cells, with a larger shift in mean towards positive, high
SI values by the complex population. If there were a continuous
diversity among complex/simple types (31), then the net effect by
complex cells is merely to shift the mean, without the clear
separation of two populations.

Last, we address the robustness of our results. Over wide ranges
of network architectural parameters, the dynamic features observed
in the IDS regime can be obtained, by readjusting coupling
strengths. Thus, the IDS persists for (i) the ratio A of NMDA to the
total conductance of the LR connection ranging from ~5% to
100%; (ii) the LR coupling eccentricity (22), characterized by the
ratio of major axis to the minor, ranging from ~1 to 2; (iii) the ratio
oxe/ o of the spatial scales of excitatory to inhibitory cells, ranging
from ~0.5 to =~2; (iv) a synaptic release probability (28) for
cortico-cortical connections, ranging from 100% to <50%; (v) the
background firing rate vz from 2 to 20 spikes per second; (vi) the
orientation spread projected by the LR couplings, £ A6 g from *5°
to +11°. Adding synaptic depression and spike frequency adapta-
tion to our modeling was shown in our simulations to have little
effects because of the very low spontaneous firing rate of the cortex
(data not shown).
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