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MODULATIONS IN THE LEADING EDGES OF MIDLATITUDE 

STORM TRACKS* 


R H G O O D L ~ A N ~A J ~ I A J D A ~AND D W LICLAUGHLIN~ 

Abstract. Downstream development is a term encompassing a variety of effects relating to  
the propagation of storm systems at  midlatitude. We investigate a mechanism behind downstream 
development and study how wave propagation is affected by varying several physical parameters. 
We then develop a multiple scales modulation theory based on processes in the leading edge of 
propagating fronts t o  examine the  effect of nonlinearity and weak variation in the background flow. 
Detailed comparisons are made with numerical experiments for a simple model system. 
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1. Introduction. Observations [6. 131 establish that midlatitude storrn tracks 
live longer and propagate farther and faster than traditional theories would predict. 
The midlatitude (20-70") storm track is a disturbance in the atmosphere comprised of 
a group of eddies which move eastward as a wave packet. gaining energy from strong 
shears which exist at middle latitudes. and are responsible for much of the weather we 
experience. A fuller understanding of the rnecha~lisrns responsible for the generation 
of these storms would be very useful for weather prediction. perhaps leading to a 
significant increase in prediction times. 

The storrn track consists of a short wave packet containing roughly half a dozen 
eddies. They are formed at the eastern edges of continents. where diabatic heating 
leads to  increased instability. Sfaximum "eddy activity" is found downstream. in 
regions of weaker instability. This wave packet then travels through the region of 
weaker instability. This is referred to as "downstream development." IVhile the 
storm track has a life cycle measured in weeks and may circle the entire globe, it is 
cornposed of eddies whose i~ldividual lifetimes may be only 3-6 days. 

The mechanism behind the storrn track is the "baroclinic instability." Solar heat- 
ing causes a strong equator-to-pole temperature gradient. This sets up a density 
gradient. which competes at midlatitudes with the effect of the earth's rotation and 
leads to the "thermal wind balance" -a vertical shearing of the predominant west- 
erlies that make up the jet stream. The instability associated with this shear. the 
baroclinic instability. is responsible for the generation of storms in this region. In 
the region where storm tracks form. the underlying atmospheric flow is absolutely 
unstable, which means that localized disturbances may grow zn place unbounded if 

the growth is not arrested by nonlinear processes. Downstream. the atmosphere is 
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convectively unstable, which means that localized gro~ving disturbances eventually 
move away and disturbances remain bounded at  any point in space. These definitions 
will be made precise in the text. 

Several phenomena related to storrn track propagation are generally referred to 
as "downstream development." including the following observations: eddy activity 
achieves its rnaxirnum downstream of the region of absolute instability. and the storm 
track propagates easily through the downstream region. Storm tracks are observed 
to move faster than would be predicted by envelope equations based on modulations 
of unstable normal modes. This is consistent with observations that dynamics at the 
leading edge have a dominant effect on the growth of the wave packet and that the 
group velocity of the propagating wave packet exceeds its phase velocity-so that the 
packet appears to propagate by forming new eddies at its leading edge. 

Downstream development has been observed in a number of observational and 
numerical studies. For the southern hemisphere, Held and Lee [13] study European 
Center for Medium-Range JYeather Forecasting (ECI\IJYF) data and observe clear 
examples of downstream developing wave packets. These wave packets correspond to 
storm systems made up of several eddies. which rnay circle the globe several times. 
They estimate phase speeds of individual crests and group speeds of entire wave 
packets. The group velocity is approximately five tirnes the phase velocity, implying 
downstrearn development. For the northern hemisphere. Chang [6] makes similar 
observations also based on ECSIJYF data. Observing such structures is Inore difficult 
in the northern hemisphere. where there are more land-sea interfaces and the storrn 
track is less stable. 

In a collection of 1993 papers [ 5 . 6. 181. Chang and Orlanski observe downstrearn 
development in numerical experiments for a three-dimensional primitive equation 
model. This model, together with simpler models they also study. consists of a steady 
flow containing a vertical shear and usually a jet structure in the meridional direction 
to model the jet stream They identify and quantify mechanisms by which energy 
flows toward the downstrearn end of the wave packet causing new eddies to develop. 
They compute an energy budget and find the relative strengths of the various energy 
fluxes at different points of the wave packet. At the leading edge. the energy trans- 
fers are dominated by an "ageostrophic flux" term. This energy flux is due to lznea7 
terms in the perturbation equations which describe the evolutio~l of the storm track 
when the average state of the system is imposed externally. They also note that in 
numerical experiments. waves which are seeded in a region of absolute instability are 
able to  propagate easily through a region of convective instability. and that the only 
constraint on the distance of propagation is the size of the channel they study. 

Held and Lee [13] study a series of models of increasing simplicity: an idealized 
global circulation model. a two layer primitive equation model, and a two layer system 
of coupled quasi-geostrophic equations. In all cases they see the signs of downstream 
development. Significantly. they find that their simplest model, the two layer quasi- 
geostrophic cha~l~lel  with the earth's rotation and curvature modeled by the 3-plane 
approximation, produces downstream developing wave packets. They show that their 
wave packets fail to satisfy a typical nonlinear Schrodinger description that might 
be derived from a normal-mode expansion and suggest that an envelope equation 
description of their wave packets might be very interest~ng 

Swanson and Pierrehumbert [23] numerically study a similar two layer quasi- 
geostrophic system. perturbed about a jet-like shear flow They initialize a wave 
packet centered on the linearly most unstable normal mode. Initially, this normal 
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mode dominates the evolution, but at longer times, leading edge modes dominate the 
evolution, propagating essentially decoupled from the ~ lo~l l i~ lear  processes a t  the rear. 

We will explore the interaction between the leading edges of storm tracks and a 
slowly varying shear flow. Some other studies of the baroclinic instability in a variable 
environment have focused on local and global modes for baroclinically unstable media 
(Merkine and Shafranek [16]). These are basically eigenmode analyses which apply 
a linear theory throughout the domain. As the studies by Held and Lee [13] and 
Swanson and Pierrehumbert [23] show that linear theory is dominant only at the 
leading edge, we do not follow the global mode approach. 

We derive an envelope approximation of the type suggested by Held and Lee 
but centered on waves with complex wavenumber which dominate the linear leading 
edge behavior. Others have constructed such a theory for unstable normal modes, 
such as Pedlosky [19] and. more recently. Esler [9]. The physical relevance of such 
a constructio~l is questionable because, well behind the front, the solution is large, 
and thus no~lli~lear are large as well. The only place where the solution i~lteractio~ls 
is small enough to  apply weakly nonlinear theory is in the leading edge. and thus it 
is in this restricted domain where an envelope approxirnation is rnost likely to apply. 
Moreover. it is in this very region where the mechanisms of downstrearn development 
are active. Thus we design our asymptotic construction for this region. We note that 
the wavenumbers which are dominant at the leading edge of a wave packet are not 
necessarily the same as those which dominate the wave packet toward the rear. as 
seen in the numerical experiments of Swanson and Pierrehumbert [23] as well as in 
analytic studies, i~lcludi~lg those of Briggs [2] and Dee and Langer [7]. 

This study addresses two issues. First, we examine the effects of varying several 
physical parameters. notably the 0-plane effect and the width of the channel in which 
the wave propagates. on the speed and wave~lurnber of the leading edge front solutions. 
lye then derive a general set of envelope equations that describe the behavior of the 
leading edge front solutio~ls to PDEs with slowly variable media, which we use to 
model the fact that the atmosphere is absolutely unstable where storm tracks develop 
but convectively unstable downstrearn. We apply these methods to derive amplitude 
equations for the leading edge fronts of storm tracks in different physical parameter 
regimes when the shear flow is allowed to  contain spatial variation. lye also discuss 
the effects of varying the parameters on the solutio~ls obtained. 

In section 2. we introduce the model equations describing winds at  midlatitudes. 
We discuss mathematical methods used to obtain information about the leading edges 
of waves in unstable media and apply these methods to our model system, examining 
the effect of the various physical parameters separately and together. In section 3. 
we examine the effect of slowly varying media on the leading edges via a multiple 
scales expansion. which results in modulation equations for the leading edges of storrn 
tracks under varying physical parameters. Finally. in section 4. we perform numerical 
experiments to verify the validity of the modulation equations on a simpler set of 
model equations. 

2. Linear leading edge theory for baroclinic systems. 

2.1. A mathematical model for midlatitude storm tracks. lye begin with 
the simplest physical model shown by Held and Lee [13] to  capture the phenome~lo~l 
of downstream development. Although the Charney rnodel is the considered the least 
cornplex systern to accurately capture the full dispersion dynamics of the midlatitude 
baroclinic instability [lo].we choose to  work with a simpler two layer rnodel in order 
to further develop the theory to handle weak variations in the rnedium in section 3. 
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We consider a fluid idealized to  two shallow immiscible layers of slightly different 
densities. bounded above by a rigid lid at height D. The system is in a rapidly 
rotating reference frame with a variable rate of rotation given by 

where y' is the (dimensional) distance in the meridional direction. to model the cur- 
vature of the earth. (This linear variation of the rotation rate along the meridional 
direction is derived as a first order approximation to the local normal component of 
the earth's rotation in a small band centered at middle latitude.) We include a drag 
term to model dissipation at the earth's surface proportional to  r1 times the lower 
layer velocity. We choose the physical scales [L,D. L/U,  U,  D U / L ]  for the horizon- 
tal coordinates. the vertical coordinate, time, and horizontal and vertical velocities. 
Then. assuming the Rossby number Ro = U / f o L to be small. which indicates a bal- 
ance between gravitation and the effects the earth's rotation. we have the standard 
quasi-geostrophic potential vorticity equations: 

(:+%$ 2;) =O.- (AQl + F ( Q 2 - 8 1 ) + R y )  

+ 2;(1) (:
 - (AQ2+ F(Q1 - 8 2 )  + Ry) + r A 8 2  = 0.2;) 
The nondimensional parameters which appear are 

The functions Q1 and 9 2  are the upper and lower layer stream functions. so the 
velocity in each layer is given by 

For co~ls ta~l t  uj = U j , one has the exact solutio~l 

a constant zonal flow in each layer. A full derivation of these equations is given in [20]. 
We will be concerned with this system in two idealized geometries: in the first, 

the domain is unbounded in both dimensions. In the second. the fluid is confined to 
a channel of finite width in the meridional (y) direction and of infinite extent in the 
zonal (x) direction. In this second case we have the boundary conditions 

We write perturbation equations by letting 
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and by letting 

be the barotropic and baroclinic parts of the background flow, respectively. The 
perturbation equations are 

Equations (3) are in dimensional variables with all parameters explicitly repre- 
sented in the equations. We begin by rescaling the equations to reduce the number 
of parameters. We make the scalings 

and change variables to the moving reference frame 

which makes the mean velocities in each layer u1= 1 and 0 2  = -1 and allows us to  
work with a system in only three parameters: 3. r ,  and the no~ldime~lsional channel 
width. (Note that working in a reference frame moving at the mean velocity oT is 
equivalent to  working in a system with zero mean flow.) 

lye drop the tildes and obtain the dimensionless equations, dependent only on 
the parameters 3 and r .  

a*1-+ -+ -- ---
at 
a 

ax 
a ayl 

a x a y  
a 

""'a)a y a x  (Awl + (yz- W I ) )  + (3+2)-ax = 0, 

We may write this system as a general differential equation consisting of a linear 
and a quadratic part: 
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where in ( 5 )  

For the asymptotic methods that follow we require that the linearized version of (6) 
be unstable in the sense we now describe in section 2.2. 

2.2. Derivation of marginal stability/leading edge speed. We describe a 
method for finding leading edge "marginal stability" velocities for linear waves-as 
put forward by Briggs in [2] and well summarized in Huerre and Monkewitz [14]. This 
is based on linear processes in the leading edges. noting that Orlanski and Chang [18] 
found lznear ageostrophic flux terms to  be the dominant mode of energy transfer 
in simulations of downstream developing baroclinic systems and that Swanson and 
Pierrehumbert [23] found that propagation is controlled by leading edge dynamics. 

Consider a y-independent linearized form of our generalized equation (6): 

where C is a matrix valued polynomial in two variables. This has solutions of the 
form 

for w and k sat'isfying t'he dispersion relation 

(9) A(k .  w) = det C ( k ,w) = 0. 

The general solution to (7) is given by a space-time convolution with Green's 
function, which satisfies 

G(x ,  t )  may be represented by a Fourier-Laplace integral, 

where r, the Bromwich contour, is a horizontal line in the complex plane lying above 
Imw = a, C,,j  are the entries of the matrix C,and 

This choice of r ensures causality by allowing the w-integral to be closed in the upper 
half plane for t > 0.The leading term of the asy~nptotics for t >> 1 will be given by 
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where the quantities k*, w*, and v* are defined in the discussion below. 
We will study the asymptotic behavior of solutions as t -+ along the ray 

x = xo + ut.  We will first show how to find the "local growth rate" in the reference 
frame u = 0and then show how to extend this argument to a moving reference frame 
with velocity u # 0.We fix x = xo and study the behavior of solutions as t -+ x. 
First, we evaluate the k-integral. For xo > 0 the Fourier contour must be closed in 
the upper half k-plane. For each on the Bromwich contour, we define the pole loci 
as 

The pole loci then determine the singularities of the integral (11). If A(w, k) is N t h  
degree in k, then for each w on the Bromwich contour, the pole loci contain N roots, 
the first N+ of which lie in the upper half plane. The k-integral in (11) can then be 
evaluated by residues, 

To evaluate the remaining integral for large t .  the Bromwich contour r should be 
deformed downward as far as possible in the complex w-plane. The asymptotics are 
then dominated by the singularity in the w-plane with the largest imaginary part. 
Note, however, that the pole loci are defined in terms of the w-contour. and shifting r 
also causes the pole loci to shift. When r lies entirely above the line Imw = a ,  then 
the pole loci do not intersect the real k-axis. as a is the maximum imaginary part of w 
for any k on the real axis. As r is shifted downward below this line. however, the pole 
loci may intersect the real k-axis on which the Fourier integral is performed. Thus. as 
r is deformed, the k integration contour must be deformed to  avoid the singularities 
of this integral. As the k-contour is deformed, the pole loci also deform. For critical 
values of w, two branches of the pole loci may coalesce. This deformation process is 
shown in Figure 2.1. 

When two poles on the pole loci coalesce, one of two things may happen. If two 
pole loci from the same side of the k-contour coalesce. they will not contribute to  
the integral, as two coalescing first order poles form a pure second order pole. which 
has zero residue. If two poles from loci on opposite sides of the k-contour coalesce, 
then the k-contour is "pinched" between the pole loci. and r can not be lowered any 
further. Let w, be the uppermost point in the +plane for which two pole loci cross 
from opposite sides of the Fourier contour, and let k, be the point in the k-plane 
where they cross. Clearly, where two pole loci coalesce the dispersion relation (9) 
must have a double root so that 

dA 
-(k,, w,) = 0.
dk 

Thus finding a saddle point of A(k: w) is a necessary condition for finding the dominant 
term in the asymptotics but not a sufficient one: as the double root must arise from 
a "pinching" of the Fourier contour between the pole loci. 

Note that as (k: w) -+ (k,, w,), the denominator in (13) goes to  zero so that the 
integral is singular at this point. To evaluate this integral asymptotically, we expand 



FIG 2 1 To asymptotzcally evaluate the double zntegral over the Brom&zch contour r and the 
Fourzer contour F zn ( a ) , the contour r zs shzfted do&nward. (b),  &hzch requzres a shzft of F .  untzl 
a szngularzty zs met ,  ( c ) .  and F becomes "pznched" between the zmages of r zn the k-plane Thzs 
figure zs reproduced from [14] 

it in the neighborhood of the singularity (14). Repeated use of Taj-lor's theorem yields 

the sign of which will depend on the specific problem. The denominator in (13) thus 
vanishes as (w- d , ) ; . and the leading term of the integral in (13) may be obtained 
from the expansion about this singularity: 
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The exponential growth rate in the stationary frame is thus given by eIrnu5.We may 
extend this analysis to find the growth rate in a reference frame moving at constant 
velocity v by considering the behavior as t -+ with x = xo + vt. This is equivalent 
to  a change of variables to ( 2  = x - vt, f = t ) .  We repeat the preceding analysis in 
this frame with iZI = w -vk and = k. The growth rate in the reference frame moving 
at constant velocity v is thus given by eImGs= elm(Ws-vks).The dispersion relation is 
independent of the moving reference frame, while the saddle point condition can be 
written in the original variables, (k. w), as 

Suppose that there exists a finite range of velocities (vt, vl) such that the growth 
rate Imi;l,(v) is positive for reference frame velocities in this interval and vanishes 
at the endpoints vt and vl. These velocities define a wave packet which is both 
expanding in space and growing in amplitude. The trazlzng edge speed will be given 
by vt, and the leadzng edge speed will be given by vl. These are referred to as marginal 
stability velocities because they mark the transition between reference frames in which 
the solution is growing to  those in which it is decaying. We will denote the leading 
edge marginal velocity by v* and the associated wavenumber and frequency in that 
reference frame k* and w*. The marginality condition can be written as 

(17) ImG* = Im (w* - v*k*)= 0. 

An unstable system is deemed absolutely unstable if 0 E (vt, vl) ,  that is. if the 
growth rate in the stationary frame of reference is positive. In this case a localized 
disturbance will eventually grow to overtake the entire domain. By contrast, it is 
conuectiuely unstable if v = 0 is not contained in the region of instability. In this 
case, a growing disturbance will eventually move out of any compact region, and the 
limiting solution is finite a t  every point in space. We will use the methods described 
here to  discuss the absolute and convective stability properties of the background 
shear flow at  midlatitude. 

To summarize. the asymptotic properties of the leading edge wave will be de- 
scribed by the triplet (v*. k*, w*). which satisfies 

(18) A(w*, k*) = 0, the dispersion relation, 

the saddle point condition, 

(20) Im(wf - v*k*)= 0, the marginality condition, 

in addition to the more stringent conditions that the saddle point arise as a true 
"pinch point" and that this be the largest v* for which such a triplet exists. 

2.3. Numerical implementation of this method. For a complicated system 
of PDEs, the three preceding conditions will not be solvable in analytic closed form, 
so a numerical scheme must be implemented to find the leading edge speed. We 
accomplish this in two steps. First, with v as a parameter, we find all ordered pairs 
(k, w) which satisfy the dispersion relation and saddle point condition, (18) and (19), 
and we determine which of these represent "pinch points" and thus contribute to 
Green's function. The second step determines the growth rates associated with these 
wavenumbers and looks for the edges of the stability regions in "velocity space" to  
determine the leading edge speed. 
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Our first step is to  find all the saddle points of the system. We may eliminate the 
d from the pair of equations by forming the resultant of the two polynomials. (18) 
and (19). when considered as functions of d [3]. This forms a higher order polynomial 
in k alone This is advantageous for two reasons. First. we may simply read from 
the degree of this polynomial how many common roots are shared by (18) and (19). 
Second. we may use iterative eigenvalue methods to  find the roots of a single poly- 
nomial. This method was found to  be much more stable and reliable than using a 
Newton method to  jointly solve the system of two polynomials. 

To find the leading edge properties of the wave, first the resultant is found sym- 
bolically using IIaple. Then all the roots k of the resultant are found nunlerically 
as a function of the reference frame velocity z t .  For each of these k. the accompany- 
ing frequency w' and growth rate Im(d - r k )  are formed. Each root k which gives a 
positive growth rate is then examined to see if it corresponds to  a "pinch point" and 
contributes to  the asymptotic solution. Note that a double root is a pinch point if the 
two pole loci which join to  form the double root are on opposite sides of the Fourier 
contour before the Broinwich contour is lowered. Therefore, we may simply examine 
where the two roots go if the imaginary part of d, is increased to  o,the maximum 
growth rate for real wavenumbers. If one root moves to the upper half k-plane and 
the other root irioves to the lower half. then the double root corresponds to a pinch 
point. 

We then examine the growth rates Im(w' - ck) of all the growing modes as a 
function of velocity and find a "region of instability" with respect to  the reference 
frame velocity u .  The velocity at the right endpoint of the instability region is then 
taken to  be the leading edge marginal stability velocity. c*. 

2.4. Application to downstream development. R e  now consider the scaled 
two layer midlatitude quasi-geostrophic equation (5). and we consider leading edge 
dynamics with or without $-plane and lower layer Eknlan drag effects. We will look 
primarily at flows with no dependence on y. the cross stream direction, and then 
generalize to  flows in channel geometries. 

2.4.1. The inviscid f-plane, no channel. R e  first present the simplest possi- 
ble variant of the above system by setting the Coriolis parameter. $. and the coefficient 
of Ekman damping. r.  to  zero and assuming a y-independent geometry. IVe will be 
able to  gain a complete understanding of this system and then may consider the fuller 
versions perturbatively. We also discover some bifurcations as the parameters are 
varied, which demonstrates the limitations of the perturbative approach. 

lye linearize the scaled perturbation equations (5). with 3 = 0 and r = 0.yielding 

If we look for sinusoidal normal-mode solutions of the form (8).then (w'.k )  must 
satisfy the dispersion relation 
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F I G .  2.2. T h e  selected wavenumbers as a function of reference frame veloczty. There are eight 
waves selected i n  each reference frame. labeled 1-8. 

Thus the disturbances of wavenumber k 2  < 2 are unstable. The saddle point condi- 
tion (19) in the reference frame moving at velocity L. is given by 

Eliminating w' between (22) and (23) yields 

Thus, implementing the procedure described in section 2.3. solving this final equation 
with z' as a parameter gives us a set of eight "candidate" wavenumbers. Figure 2.2 
shows the selected wavenumbers as a function of the reference frame velocity 1%.Only 
those with Im k > 0 are relevant in the leading edge of a disturbance, as the solution 
must decay as x + +m. 

Figure 2.3 shows the growth rates for the four right-decaying wave solutions. The 
two roots labeled 1 and 2 in Figure 2.2 which diverge to cc as 214 1 do not satisfy 
the pinch point condition so do not contribute to  the integral. 

The point where the last curve crosses the axis is the marginal reference velocity 
and is marked with a star in Figure 2.3. For this system. the leading edge speed may 
be found exactly. The critical velocity is v* = 4.At this velocity, the coefficients of 
k2  and k6 in (24) vanish so that (24) becomes 

which may be solved by the quadratic formula. The two roots k* = i l  + i represent 
the exact wavenumbers making up the leading edge of the wave. The leading edge 
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FIG.2.3. The growth rate of the waves which are right-decayzng as a function of reference frame 
velocity. A star marks the speed v = 4,at whzch the system is neutrally stable. 

properties are thus given by 

We may use this analysis to  clarify a point made by Merkine in [15].He finds that 
IUTI < filUBI is a necessary and sufficient criterion for absolute instability. Recall 
that we have chosen UT = 0 and UB = 1. If UT and UB are chosen generally. then 
the leading and trailing edge velocities are c* = UT * ~ U B .  = - fi< 0.If 21- UT 
then the system is absolutely unstable. which is Merkine's condition. 

2.4.2. The addition of the P-plane effect. Djext we investigate the effect of 
reintroducing the 3-plane terms into the equations. IVe linearize the scaled perturba- 
tion equations ( 5 ) .with 3 > 0,yielding 

Again, we substitute the ansatz (8) and find the dispersion relation 

We may solve the dispersion relation for d with real k .  
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F I G .  2.4. The wavenumbers representing the six roots of the P-plane resultant which are not 
present i n  the f-plane model. Solid lines denote posztive imaginary parts; dashed curves denote 
negatzve imagznary parts. 

and find that this may give growing normal modes if 3 < 2. (It is more standard t o  
write the condition for instability in terms of a critical shear UB [19], which we have 
scaled to  equal one.) The f-plane system is unstable for any velocity. so the 0-plane 
effect stabilizes the background shear flow. 

IVe find that k now satisfies a polynomial of degree 14, yielding 14 possible values 
of k for each 2). For the f-plane equations, there were only 8 roots, so 6 new roots 
arise when 0 is increased from zero. The six "new" waves are shown in Figure 2.4 for 
the case 3 = 0.1. The structure remains very similar as 3 is increased. Our initial 
expectation was that the leading edge speed for small 3 would be a small perturbation 
of the leading edge speed for of the f-plane equations. The new roots instead change 
the behavior dramatically. 

For small values of ,!?,the new roots and the old roots seem to behave indepen- 
dently of each other. The roots relevant to the leading edges are labeled 9 and 14 in 
Figure 2.4. These are not simply perturbations of the roots which give the leading 
edge for the f-plane equations. They display an interesting and unexpected behavior. 
At a specific value of c ,  to  the right of the marginal point for the f-plane equations. 
two pairs of conjugate roots coalesce at a finite 21crltlcal and for c > ~ ' ~ , , ~ ~ ~ ~ lhave zero 
imaginary part. This bifurcation point. which corresponds to the largest marginal 
stability velocity. is clearly visible in Figure 2.4. The Briggs procedure fails, as the 
leading wave behavior is given by a nongeneric higher order saddle point. correspond- 
ing to a quadruple root of the dispersion relation (27). Therefore. Z1 ' ( k* )= 0. Briggs's 
asymptotic formula (12). does not directly apply. 

As ,!? 4 0. the resultant factors into the degree 8 f-plane resultant and a second 



759 hlODULATIONS OF ATMOSPHERIC WAVES 

polynomial of degree 6. From this second polynomial. we may find a perturbative value 
of the leading edge wavenumber and find that the associated leading edge velocity 

approaches t t  = d s .which is very close to  the numerically obtained values for 
finite 3 and nearly three times the speed predicted for the f-plane. This contrasts 
sharply with the results of studies that include realistic vertical structure. for which 
the nonzero 3 causes a net decrease in the leading edge speed [ 2 2 ] .  

2.4.3. The addition of dissipation. Kext we reintroduce dissipation in the 
form of lower layer Ekman damping, which will remove the degeneracy discussed in 
the previous section. The PDE is given by 

The dispersion relation becomes complex. and the resultant equation in k alone 
is a complex coefficient fourteenth degree polynomial. and the roots no longer occur 
in conjugate pairs. Dissipation has the expected result of breaking the degeneracy of 
the leading edge mode arid slowing down the leading edge speed slightly. Recall that 
for the conservative equation. a pair of conjugate roots bifurcates to  a pair of real 
roots at the leading edge speed zl*. Figure 2.5 shows that when dissipation is added. 
the bifurcation no longer takes place. The structure of the bifurcation remains visible 
in the perturbed system. The selected wavenumber, however, has an imaginary part 
of about 10W2 so that the basic shape of the leading wave remains sinusoidal when 
dissipation is added, with only a very slow exponential decay. Figure 2.6 shows the 
stabilization and the decrease in the speed of the leading edge resulting from the 
dissipation. It also shows that the growth rate levels off after crossing the marginality 
point. and does not continue to decav quicklv. as was the case for the f-plane leading 
edge. A more "robust" rnodification to the leading edge properties will be given by 
the addition of a channel geornetry. For later reference, we present a table of the 
values at the leading edge with J = 1.6. the value used by DelSole 181 under our 
nondimensionalization, and r variable: 

(29) 

2.4.4. The effect of the channel geometry. The discussions above have all 
focused on y-independent geornetries. which we a-ill use to exarnine how y-independent 
fronts are modulated in the presence of slowly varying media. AIany other instability 
studies [8.9. 15. 191 foclis on channel geornetries, where the fluid is bounded between 
hard walls a t  y = 0 and y = L. UTe examine the effect of the channel width both on 
the leading edge of the f-plane equations and the more interesting changes that take 
place in the high order rnultiple root which characterizes the leading edge for the 
equations. 

2.4.5. The f-plane equations. The normal-mode solutions to the linearized 
equations are 

('t) = (:) e z ( k x - d t )  sin /y% 
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F I G .  2 . 5 .  The "breaking" of the bifurcatzon for the leading edge wave. 

FIG.2.6. The growth rate versus velocity for the dzssipative (solid line) and zero disszpation 
(dashed line). 
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FIG.2.7. Marginal stabzlzty velocity vs. y-wavenumber 1 ,  showzng good agreement between the 
values computed vza the perturbatzon expansion (+) and vza the numerical procedure (0). 

a-here 1 = F.\Ye shall take N = 1as this mode is the most unstable. The dispersion 
relation is 

As before, the formula for selected ivavenumbers is of fourth degree in k2.  
A wide channel gives rise to  a srnall wavenumber, 1 = t, which admits the pertur- 

bation expansion: 

The perturbation series gives excellent approximations to  the values of the leading 
edge velocity as shown in Figure 2.7. Slerkine [15] finds bv a formal argument that 
the condition for absolute instability of this system is given by UB > f i ( 1  - $)' I2,  
which agrees with the perturbation series to leading order. 

2.4.6. The P-plane equations in a channel. In this section. tve investigate 
the effect of the channel geometry on the high order root tvhich determines the leading 
edge wave for the 3-plane system. The effect is more dramatic than of simply adding 
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F I G .  2 .8 .  Growth rate versus veloczty wzth 1 = .1 (solzd), 1 = .25 (dashed), and 1 = .4 (dash-dot). 

dissipation. DelSole in [8]studies the 3-plane equations in a channel and does not 
shot$, a high order root a t  the leading edge. This leads us to studv whether the channel 
geometry is sufficient to remove the degeneracy. 

We study the 3-plane equations with 7. = 0 and find that k satisfies a polynomial 
equation of degree 16. We fix 3 = 1.6, corresponding to the value used in [8].and 
decrease the channel width from x,which is equivalent to increasing 1 from zero. The 
system goes through three stages. (i) When the channel is very wide. the behavior 
is essentiallv the same as for a channel of infinite width. (ii) As the channel is nar- 
rowed. however, a second high order root forms at a velocity greater than The1 1 " .  

two quadruple roots move together as the channel is narrowed further and at some 
critical channel width annihilate each other. (iii) Beyond this value. the multiple roots 
disappear. and the svstem contains no degeneracy. In Figure 2.8. the growth rate is 
shown as a function of velocity for values of 1 in the three above regimes. (i) When 
1 is small. the behavior is the same as when 1 = 0.The leading edge wave bifurcates 
a t  some finite value of I * ,  beyond which there is no pinch point. (ii) For intermediate 
1. there exist two critical velocities. separating two unstable wave packets. (iii) For 1 
sufficiently large, these two critical velocities. and hence the associated wave packets. 
merge. and the leading edge wave is determined by a double root as in the standard 
Briggs procedure. Such an 1 corresponds to a channel whose width is two to three 
tirnes the tvavelength in the zonal direction. 

This shows that the multiple root which appeared to determine the leading edge 
behavior is an artifact of the one-dimensional geometry. However. even without this 
degeneracy. the leading edge speed is significantly enhanced in the presence of nonzero 
3. 
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3. Modulation by nonlinearity and weakly variable media. With the 
description of the marginally stable linear wave front in hand. we now examine the 
effects that nonlinearity and weak variation in the background shear flow have on 
downstream developing dynamics. Recall that the atmosphere is absolutely unstable 
off the eastern shores of continents and convectively unstable over the oceans. An 
easy way to  model this is to allow the strength of the shear to vary slowly. To create 
a variable medium. we linearize (1) about the (nearly) exact solution 

This is not an exact solution to (1).but we may think of it as arising due to a balance 
of unwritten damping and driving terms in the equation. 

JVe again consider the quasi-geostrophic potential vorticity equations as given in 
the abstract form (6). We further assume that the solutions depend only weakly on 
the transverse, y ,  direction through a scaled variable Y = ay. We therefore write, as 
a generalization of (6). 

where, for the quasi-geostrophic equations with shear flow as given in (33). 

and 

To study how the leading edge wave is slowly modulated by the additional terms 
in this equation, we develop a multiple scales expansion centered around the y- 
independent leading edge mode e ' ( "~ - - ' *~ )b : If we assume that the solution is in- 
dependent of y to leading order. then the only y-dependence in the solution will be 
generated by the variable coefficient term M .  

JVe follow the standard procedure in deriving envelope equations with one major 
exception: we center our asymptotic expansion on the linear fronts described in the 
previous section instead of on normal modes. A normal-mode expansion requires a 
weak instability so that the leading order term in the expansion can be approximated 
by a neutrally stable mode. By using the linear front. we are able to  carry out the 
expansion for strongly unstable systems by working in the reference frarne moving 
with the front. A major side effect of centering our expansion on these fronts is that 
nonlinear terms will not enter our envelope equations even if nonlinearity is present 
in the system. The form of the asynlptotics will show that this method is applicable 
only if the variable coefficient term M satisfies certain restrictions. 

11-e recall that a multiple scales expansion to  a PDE consists of expanding both 
the solution and its derixatives in powers of small parameter 6 and solving a sequence 
of equations at increasing powers of 6 .  The nlodulation equations are then derived 
as the result of solvability conditions for these equations. necessary to  preserve the 
assumed ordering of the expansion. \Ye write 
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where is the linear leading front. slowly modulated in space and time, 
+ 
q ( l )  = A(<,Y,T2)ge%(k*"-"*t), 

and the first correction is given by 

where X ,  Y ,and Tl are "C?(E)"  slow space and time variables, T2 is an " 0 ( t 2 ) "slow 
time variable. and 6 is a slow space variable in the reference frame moving with the 
front. The terms and $(2.2)arise due to  the nonlinearity. The result of the $ ( 2 1 1 )  

asymptotics derived in section 3.1 may be summarized as follows. 
Asymptotic result. If $(lo and $(2)  are defined as above, then  the correctaon 

t e r m  B zs of the form B = O ( X .  T I ,  Y ) A ( J .  Y.T 2 ) ,and A and O satasfy 

(36a) O T ~+ V*OX= m ( X .Y ) .  

T h e  coef icients  m and p are given below in (45) and (46) 

3.1. The leading edge perturbation expansion. In this subsection, we de- 
rive the results in (36). LYhen the solution is sufficiently small. of order E or smaller. 
then will approximately satisfy the linearized equation. Since the front decays 
exponentially, the solution will certainly be sufficiently small for sufficiently large x .  

We define slow time and space scales 

X = E X ,  Y = t y ,  T I  = t t ,  and T2 = t 2 t  

and expand the derivatives accordingly: 

d d d d d d d 
-+ -+t - and -+ - + ~ - + ~ 2 -
d x  ax ax dt a x  dTl dT2' 

We assume that the solution depends on y only through the slow variable Y so that 

The leading order equation is taken to be a slow modulation of the leading edge wave, 
4 

(37) d ( l )= + C.C..A ( X .Y,T I .  T2)ez (k*x-w*t )g  

where C.C.denotes complex conjugate. Recall that we may form the matrix L ( k ,d )  

from the relation 

~ ~ ~ ( k * x - w * t ) gL (k, w') e ~ ( k * x - ~ * t ) g= 

The vector 6 must be in its null space, so we may without loss of generality set 
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We plug in the multiple scale ansatz and separate orders to derive a formal sequence 
of equations of the form 

where the derivatives of are evaluated at the point (k*, d* ) .  
We see that (39) and (40) are of the form 

Thus we must solve this class of linear equations. First. we define a resonance as 
a forcing term on the right-hand side which causes the solution to grow to violate 
the ordering (35) for large t. (The solution ;(I) is meaningful in the reference frame 
moving at the leading edge velocity, so it is in this reference frame we must evaluate 
the asymptotic ordering.) By the Fredholrn alternative, a resonance will occur if @ is 
in the adjoint null space of C. 

Nonresonance assumptzon. We make the standard assumption that C is a dis- 
persive operator in that d l ( k )  # 0 so that if a particular wavenumber and frequency 
satisfy the dispersion relation A ( k , d )  = 0, then in general nlultiples of the ordered 
pair (nk, n d )  will not also satisfy the dispersion relation, i.e.. A(nk. nd )  # 0. In fact. 
we will make the slightly more general assunlption that terms on the right-hand side 
of (41) of the form @ = @oe"klx-"lt) for (k l .d l )  # (k*.d*) .  which arise in the course 
of this expansion, satisfy A(kl ,  d l )  # 0. SO that (41) is solvable. Fortunately. for all 
the systems we anvestagate, the nontianashzng condataon 

is satisfied, and there is no  resonance due to nonlinear terms 

3.1.1. 0 ( e 2 ) .  The leading order ansatz (37) solves the O(s) equation, so we may 
move to the next order. The O(s2) equation then becomes 

where we have let d* = k*x - d * t .  It will be convenient to  consider the effect of the 
linear and nonlinear forcing terms separately. 

Nonlinear terms. The term a(;('), ;(I)) in (42) gives rise to terms on the right- 
hand side proportional to  e2"*. e c 2Irn '* . By the above nonresonance assun~ption, 
these will give rise to terms of the same form in the expression for $(2). In the 
reference frame moving with the leading edge front. these have zero growth rate so 
are not resonant. 
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Linear terms. Given the nonresonance assumption, we need consider only the 
linear portion of (42): 

The tern1 on the right-hand side will give rise to  resonances unless it is perpendicular 
to  the adjoint null space of C. Enforcing this nornlal condition gives the general 
solvability condition [l11. Changing independent variables to  

the amplitude A is seen to  depend only on the 'group velocity variable" E: 

We define for the (E, r ) reference frame the wavenumber and frequency 

k = k and 2 = u, -v*k. 

A (nonunique) solution is given by 2= (a.o ) ~ ,where 

and primes denote derivatives with respect to  k. The condition that the solution 
decay as x + cc prevents us from including a constant terrn in the general solution. 
We include in our full solution an additional solution to the homogeneous equation 
which will be used in eliminating resonances due to  the variable medium. Thus the 
full solution reads 

4 

*(2) = ((i)+ O(X.  T1IAg) + ~ 2 . 2 ) ~ - 2 1 m ~ *e t ~ *+ ~ ( 2 . l ) ~ 2 z 0 *  + c.c.,(43) 

where the terms $(211) and $ ( 2 s 2 )  are generated by the nonlinear forcing term B 

3.1.2. O ( e 3 ) . Again we consider the linear and nonlinear terms separately. 
Nonlinear terms. The terms on the right-hand side of the forrn B(&('), g(2)) 

and B(;(~),$(')) will lead to  forcing terrns that look like e"(k*x-w*t) and 
e z ( ( k ~ f 3 z k ~ ) x - ( d ~ f 3 z " ~ ) t )as well as terms of the type discussed in the previous section 
on nonlinear terms. By the nonresonance assumption, these terms do not contribute 
to resonances. 

We note here the effect of centering our asyrnptotics on the leading edge front. If 
the expansion had been performed for nornlal modes, then the imaginary parts of k* 
and d* would be zero. and there would be a forcing term proportional to  ez(k*x-w*t) 
arising due to the nonlinearity. This is precisely how the cubic nonlinearity arises when 
the nonlinear Schrodinger or Ginzburg-Landau equation is derived as an envelope 
approximation-a rnechanisrn lacking in this wave front situation. 

Linear terms. As the nonlinear terms do not in general cause resonances. the 
solvability condition for (40) cornes entirely frorn the linear terms, and the ordering 
of the expansion is violated unless 

- det [ 1 M (-kll')]A - det [ 1 AYY= 0.Cy ( -&C:I;2)]  
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Define 

m = i det [ I M /A,.(;!';)I 

We may split (44) in two by taking a derivative with respect to T, recalling that 
A = L  + v*&.As AT 0, the remaining terms will be aT = 

m(X.  Y))  = 0. 

This may be integrated once to  obtain 

with constant of integration F. We may solve the O equation to  obtain 

This explicit formula for O shows that the asymptotic ordering could be violated if 
m(X,  Y)  is not subject to  rather stringent restrictions. In general, we rnay set F to 
be 

which means this limit must exist for each Y in the donlain considered. 
We then use (48) to  eliminate O from (44), yielding 

3.2. The two layer f -plane without dissipation. The first rnodel for which 
we discuss the leading edge rnodulation equations is the inviscid f-plane. The nondi- 
rnensionalization of this model and the determination of the properties of its leading 
edge linear front are discussed in section 2. 

The leading order linear operator is discussed in section 2.4.1. Recall that the 
linear part of the front is of the form 

where the wavenumber, frequency, and velocity are given by 

To form the coefficients of the two main modulation equations described in (36), 
we need to  compute the following quantities: 
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as well as 

det [ i M (-;')I and det [ I CYI (;:')I 
Substituting the leading edge quantities (52) into the preceding expressions yields 

ALL= 16i, 

A, = 8&(l + i),  

det [ i 1 M (-;')I = 8(-1 + i (1  + &))(-V1 + i ( h  -

,!? where the coefficients are given in the following table for 

Thus the final equations are given by 

0, + &Ox = i&VB + (1 - i)VT, 

where VT and VB are the barotropic and baroclinic parts of the velocity, respectively, 
as defined in (2). 

3.3. @-plane equation with Ekman drag. We are unable to  perform this 
asymptotic expansion for the Bplane equations when I- = 0 due to  the high order 
real root at the leading edge. We can. however. derive amplitude equations when 
dissipation is included. Using the values given in (29). we derive equations of the 
form 

= 1.6. with r as given in 
the table. 

Note the interesting fact that as the dissipation increases in the full equation, the 
diffusion actually decreases in the Y direction as it is enhanced in the 6 direction. 

4. Numerical experiments. Next we confirm numerically the asymptotic pro- 
cedure described above. That the wave moves at the selected speed and has the 
correct decay properties has been computed by others [7, 211. The leading edge 
speed, wavenumber, and frequency have been well verified for systems such as we are 
studying, but the challenge in confirming the asymptotics is in resolving the exponen- 
tially decaying leading edge over several orders of magnitude. In addition, the slow 
time scales and long spatial scales imposed by the asymptotic problem require that 
the numerics be carried out on a large domain for long times. While second order 
methods would certainly be sufficient to verify the basic properties of the unmodu- 
lated system, accurate representation of the modulations due to the weakly varying 
coefficients over a long domain requires a higher order method. 
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4.1. Description of numerical experiments. To write a code that would 
implement the atmospheric wave equations to the accuracy needed would be an ex- 
tremely difficult task, so we choose to  validate the asymptotics on a simpler model 
problem-a variable coefficient complex Ginzburg-Landau equation: 

This equation is often used as a model for the evolution of systems with weak 
nonlinearities and weak instability [17] and has been derived as a model for the two 
layer quasi-geostrophic equations by Esler [9]. The problem we solve is to  set u= 1 
at x = 0 with conlpactly supported initial conditions, allowing a wave propagate to  
the right. 

Although our general derivation of modulation equations was performed for vector 
systems. a similar derivation may be done for this scalar equation. For later reference, 
the selected wavenumber. frequency, and velocity are 

4.2. Numerical difficulties. In order to  get meaningful results from this nu- 
merical experiment, a code of higher-than-usual accuracy will be needed. especially 
for the spatial discretization. To see why, recall that the important terms are A and 
0,where the full solution in the leading edge is of the form 

where k* and UJ* are complex. In order to  compare theory with the numerical experi- 
ment, we must know A to several decimal places, but over the domain of computation. 
u decays from order one down to ~ ( e - ~ ' / ' ) .If standard Fourier methods are used 
to compute the derivative, then the solution can only be resolved down to size 10-l6 
in double precision arithmetic. We instead use high order methods which are more 
"local" in nature. which are able to resolve the amplitude of a decaying exponential 
over greater distances [12]. 

For temporal discretization, there are two competing difficulties which lead us to 
our numerical method. First we have stiffness due to diffusive and dispersive terms 
in our PDE. which would suggest that we use an implicit method. Second. we have 
nonlinear terms, and we would like to avoid using implicit methods and needing to  
solve fully nonlinear equations at each step. We would also like to  be able to use a 
high order method so as not to squander the accuracy of the spatial discretization. 

4.3. Summary of method. Briefly. our method will consist of a "method of 
lines." First, we impose a spatial discretization and specify a method of computing 
approximate spatial derivatives. This reduces the PDE to a system of ODES for the 
vector 6(t),which is then solved by a suitable time stepping method. 

4.4. Spatial discretization. The spatial discretization is performed by a mul- 
tidomain Chebyshev collocation due to Yang and Shizgal [24]. Generally, Chebyshev 
methods are much more adaptable to  boundary conditions than are related Fourier 
methods. lye begin by defining the standard Chebyshev collocation method and 
then explain the multidonlain version. On the interval [-I, 11 we define the Gauss- 
Lobatto-Chebyshev (GLC') points: 
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Let f be a smooth function defined on [-I. 11, and let f b e  the vector f k  = f (xk)  of 
values at the GLC points. Then we may compute an approxinlate derivative as 

f 1 ( ~ k )= Dfk> 

where [4] 

where c, = 1 for 0 < j < N and co = cAi= 2 and x, are as defined in (55). (This 
comes from representing f as a sum of the first n + 1 Chebyshev polynomials, and 
such a derivative converges faster than any power of N as N + m.) 

It is not practical to implement this method over a large computational domain 
as D is a dense matrix and becomes extremely ill conditioned for large values of n .  
Therefore, we consider a piecewise method using overlapping subdomains as described 
by Yang and Shizgal in [24]. In this method. we partition the interval into overlapping 
subdomains of equal length so that the last two GLC points in one subdomain coincide 
with the first two points in the next subdomain. If we choose to partition an interval 
of length L into J subintervals and want to use approximating polynomials of degree 
N , then there will be 

total collocation points, and the length lSub of the subintervals will be given by 

2L 
lsub = (J f  1) + ( J - l ) c o s % '  

Such a partitioning is shown in Figure 4.1. 

The kth subdomain 

X0 ;fi + ! 
x x 

N-I N 2N-I  

F I G .  4.1. Partitioning of a n  znterval znto J ouerlappzng subdomazns Ik. 

If we let D be the ( N + 1) x ( N + 1) collocation derivative operator for a single 
subdomain. with the points in the subdomain labeled 0 through 1Y, then the full 
operator 2) has a nearly block diagonal structure. The resulting linear system is 
nearly block diagonal. We may then use this approximate derivative to  discretize 
a boundary value problem. which is very efficiently solved by Gaussian elimination 
using a specially adapted partial pivoting scheme, subject to the constraint that two 
rows may be interchanged only if they are in the same block. Such a matrix may 

h.1 
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FIG.4.2.  T h e  vanable coeficzent p used zn one expenment .  

be factored in O(JN3)  steps, and the forward and backward substitutions may be 
performed in O ( J N 2 )  steps. The elements of the matrix may be stored in a one- 
dimensional array. consecutively by rows, with all the arithmetic done in place with 
zero fill-in. Thus, with N fixed. quite large systems may be solved very efficiently. In 
practice lZr = 6 was found to be sufficient. 

4.5. Time stepping. To solve this ODE, the right-hand side is split into two 
pieces: one containing all the terms responsible for stiffness and for instability and 
one containing all the convective and nonlinear terms. The ODE may then be written 
in the form 

and solved by a high order splitting algorithm described below. 
The time stepping is done using the implicit-explicit multistep schemes due to  

Ascher, Ruuth, and Wetton [I].  These allow us to compute the nonstiff cubically 
nonlinear terms and advection terms explicitly, needing only to solve implicitly for 
the terms due to the higher order spatial derivatives. This may be thought of as a 
high order "splitting method," which allows us to  avoid costly iterations of a nonlinear 
solver. 

4.6. Results of one-dimensional simulations. Recall that the one-dimensional 
numerical experiments are performed for the model equation 

For all experiments reported, the parameters used were zt = 3, P = 1. and y = 2, which 
makes the equation convectively unstable. The experiments were performed with sixth 
order piecewise collocation and a total of 1000 subdomains for 0 5 x 5 1000. A variety 
of variable coefficient functions p(tx)  were used. an example of which is plotted in 
Figure 4.2, with E = 2.This function was generated by a random Fourier sine series. 
Other functions we used for p included Gaussians, sinusoids, and sums of randomly 
placed Gaussians. The quality of the results was fairly independent of the shape of 
the variable coefficient as long as the criterion was met that the mean of p was zero. 

Figure 3.3 shows a contour plot of the wave spreading to  the right at constant 
velocity v*.with the variable coefficient as shown in Figure 3.2. 

To postprocess these numerical results, in the parallelogram region pictured in 
Figure 4.3 we form A(1+ EO) by dividing the full solution by ez(k*x - " * t ) . Th'  is region 
is defined by to  < t < t l  and xo - v*to < x - v*t < XI  - zf*tl. In this region, the 
solution has an amplitude of about ul = .15 at the left edge and about (uJ= 10-l6 
at the right edge due to  the exponential decay of e"*,. Thus we remove this large 
variation and focus on A( l  + €0). 
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real (u) 

F I G  4 3 Solutzon to the PDE spreadzng to the rzght The parallelogram regzon shou,s the regzon 
zn ( [ , T 2 )varzables. where the slowly Laryzng functzons .A and O are defined. 

Next 

is formed from p .  where. recall. TI = et. < = t ( z  - z i * t ) .  This allows A to be 
calculated from the solution to  the full PDE. I'l-e rnay then cornpare its evolution 
with that of the envelope equation. The initial and boundary values of A are used 
to  nurnerically conlpute the evolution of A under the reduced equation (51). and the 
results are compared with the values of A obtained frorn the full sirnulation. Results 
are shown in Figure 3.3. The relative error between the envelope A as cornputed from 
the full solution and from the asynlptotic reduction is shown in Figure 4.5. Each line 
in the contour plot represents a one percent increment in the relative error. with a 
rnaxinlal relative error of about seven percent. The relative error is clearly largest at 
the left of the moving interval. where the solution to the PDE is largest and nonlinear 
effects are rnost important. 

To show the asynlptotic validity in a rnore quantitative manner. we run the sim- 
ulation for two different values of t and show that the error norrn for A decreases by 
o(t) with p = s inX.  Formally. the order of the asymptotic expansion is O(t3) .  In 
the case of scalar equatmns. (;(2). the O(e2) term in the asymptotic expansion ( 3 5 )  
vanishes so that 
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FIG.4.4. T h e  amplitude A computed from the full simulation (solid) and vza the reduced 
equatzon (dotted). T h e  contour znterval for each is  . l .  

Therefore. 

The error in the computed value of A at  large time t = 135 is plotted in Figure 4.6. 
Error(€=a )

The empirical convergence rate. given by log, Erro t ( r=QI .  is 1.65. While not quite 

O(E'), it is at least o(E). 

It would be useful to  see if the error estimate improves as E is further decreased, 
but it is difficult to run the numerical procedure with E much smaller than because 
we must run the code for times of O(E-*) on intervals of length O(E-,) in order to 
compare our theory with the numerics. As the order is only exact in the limit as 
E 0,we may only be able to  verify O(E) convergence. 

In section 3.1. we showed that the inhomogeneitl- must additionally satisfy a finite 
mean condition (50). We now investigate the importance of this numerically. To show 
that the asymptotic expansion breaks down when ydX grows large, we now show 
an example where the order of the method begins to  break down. We choose y(x)  to 
be a smoothed step function of height e2 and width 4016, and we allow the wave to 
propagate until it is about eighty percent of the way through the interval. We then 
compute the value of A bl- the above procedure and compare the errors when E = 
with those when E = i. The difference between the two computed values of A is 
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F I G .  4.5.  T h e  relative error in A computed v ia  t w o  methods.  Con tour  znterval: .01;m a x i m u m  
relative ewor :  .07, near  left edge. 

F I G .  4 .6.  T h e  dzfference an the  ampli tude A computed numerzcally and via  the  envelope equatzon 
for  t = (solid) and t = $ (dashed), for inhomogenei ty  p = sin(X).  

shown in Figure 4.7. We compute t,he empirical convergence order a t  t,he final time, 
which is approximately 1.07, so that t,he convergence is approximately first order, 
which is a significant drop off from the previous case. This shows that the mean zero 
condition on the variable coefficient term (p for complex Ginzburg-Landau, M for 
a general vector system) affects the convergence of t,he method and is not merely a 
formal breakdown in t,he ordering. 



FIG.4.7.  As zn (-1.6).u'ith shelf-like z~nnnble coejicient 

5. Conclusion. \Ye have investigated a mechanism which may be respo~isible 
for downstream development in midlatitude storm tracks. We have identified linear 
processes in the leading edge of developing storm tracks as a possible mecha~iisni 
for dowrlstream development and applied the predictiorls of this theory to  a two 
layer system of quasi-geostrophic equations which is known to exhibit downstrearii 
development. 

In investigating the leading edges of unstable baroclinic waves. we have made 
several observations: most notably. we find that the leading edge speed changes dis- 
continuously as the parameter 3 is increased from zero due to a change in the algebraic 
structure of the equations which determine the roots. Another interesting feature a e  
have explored 1s the degenerate root in the leading edge mode of the 3-plane equa- 
tions and how this is regularized both by dissipation and, more interestingl?, by the 
constraints of a finite-width channel. Studies show that in models including realis- 
tic vertical structure. the leading edge speed is actually reduced by the 3-effect. \li. 
have also clarified some points made by Slerkine [15] about the absolute instability of 
constant shear flow sollitions of the two laler f-plane problem. 

NTe then investigated the interaction of leading edge modes with a weakly varying 
medium. iVe generalized the standard [17] multiple scale procedure for wave pack- 
ets centered on unstable normal rriodes to the case of wave packets centered or1 thr. 
wavenumber at the leading edge front. Under the scaling ansatz studied. the prc- 
dominant effects are captured by linear modulation equations and are applicable onlt 
ahead of a moving front. where the solution and the nonlinear correction terms art, 
quite small. This method was applied to derive modulation equations for the leading 
edges of baroclirlic disturbances interacting with variable mean flows. The validity of 
this asymptotic represerltatiorl wai verified ~iumerically on a model system of equa- 
tions, and agreement was found ahead of the front, though only in regions where the 
solutioli is very small. Clearly. 111 order for the asymptotic representatloll of the lead- 
ing edge to  be useful. one must connect this leading edge behavior with that slight11 
behind the leading e d g ~ .  nhere rioliliriear effects become important. 
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